Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 603(7903): 819-823, 2022 03.
Article in English | MEDLINE | ID: mdl-35355005

ABSTRACT

The natural habitats of microorganisms in the human microbiome, ocean and soil ecosystems are full of colloids and macromolecules. Such environments exhibit non-Newtonian flow properties, drastically affecting the locomotion of microorganisms1-5. Although the low-Reynolds-number hydrodynamics of swimming flagellated bacteria in simple Newtonian fluids has been well developed6-9, our understanding of bacterial motility in complex non-Newtonian fluids is less mature10,11. Even after six decades of research, fundamental questions about the nature and origin of bacterial motility enhancement in polymer solutions are still under debate12-23. Here we show that flagellated bacteria in dilute colloidal suspensions display quantitatively similar motile behaviours to those in dilute polymer solutions, in particular a universal particle-size-dependent motility enhancement up to 80% accompanied by a strong suppression of bacterial wobbling18,24. By virtue of the hard-sphere nature of colloids, whose size and volume fraction we vary across experiments, our results shed light on the long-standing controversy over bacterial motility enhancement in complex fluids and suggest that polymer dynamics may not be essential for capturing the phenomenon12-23. A physical model that incorporates the colloidal nature of complex fluids quantitatively explains bacterial wobbling dynamics and mobility enhancement in both colloidal and polymeric fluids. Our findings contribute to the understanding of motile behaviours of bacteria in complex fluids, which are relevant for a wide range of microbiological processes25 and for engineering bacterial swimming in complex environments26,27.


Subject(s)
Colloids , Ecosystem , Bacteria , Humans , Hydrodynamics , Polymers
2.
Phys Rev Lett ; 132(23): 238302, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905690

ABSTRACT

The entrapment of bacteria near boundary surfaces is of biological and practical importance, yet the underlying physics is not well understood. We demonstrate that it is crucial to include a commonly neglected thermodynamic effect related to the spatial variation of hydrodynamic interactions, through a model that provides analytic explanation of bacterial entrapment in two dimensionless parameters: α_{1} the ratio of thermal energy to self-propulsion, and α_{2} an intrinsic shape factor. For α_{1} and α_{2} that match an Escherichia coli at room temperature, our model quantitatively reproduces existing experimental observations, including two key features that have not been previously resolved: The bacterial "nose-down" configuration, and the anticorrelation between the pitch angle and the wobbling angle. Furthermore, our model analytically predicts the existence of an entrapment zone in the parameter space defined by {α_{1},α_{2}}.


Subject(s)
Escherichia coli , Models, Biological , Thermodynamics , Escherichia coli/physiology , Hydrodynamics , Surface Properties
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34260387

ABSTRACT

Near-field hydrodynamic interactions in active fluids are essential to determine many important emergent behaviors observed, but have not been successfully modeled so far. In this work, we propose an effective model capturing the essence of the near-field hydrodynamic interactions through a tensorial coefficient of resistance, validated numerically by a pedagogic model system consisting of an Escherichia coli bacterium and a passive sphere. In a critical test case that studies the scattering angle of the bacterium-sphere pair dynamics, we prove that the near-field hydrodynamics can make a qualitative difference even for this simple two-body system: Calculations based on the proposed model reveal a region in parameter space where the bacterium is trapped by the passive sphere, a phenomenon that is regularly observed in experiments but cannot be explained by any existing model. In the end, we demonstrate that our model also leads to efficient simulation of active fluids with tens of thousands of bacteria, sufficiently large for investigations of many emergent behaviors.


Subject(s)
Escherichia coli/physiology , Hydrodynamics , Models, Biological , Computer Simulation , Suspensions
4.
Entropy (Basel) ; 23(9)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34573796

ABSTRACT

We study the role of disorder in producing the metastable states in which the extent of mass localization is intermediate between that of a liquid and a crystal with long-range order. We estimate the corresponding entropy with the coarse-grained description of a many-particle system used in the classical density functional model. We demonstrate that intermediate localization of the particles results in a change of the entropy from what is obtained from a microscopic approach using for sharply localized vibrational modes following a Debye distribution. An additional contribution is included in the density of vibrational states g(ω) to account for this excess entropy. A corresponding peak in g(ω)/ω2 vs. frequency ω matches the characteristic boson peak seen in amorphous solids. In the present work, we also compare the shear modulus for the inhomogeneous solid having localized density profiles with the corresponding elastic response for the uniform liquid in the limit of high frequencies.

5.
Nat Commun ; 8: 14653, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28248289

ABSTRACT

Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition.

SELECTION OF CITATIONS
SEARCH DETAIL