Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Blood ; 120(16): 3298-309, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-22948044

ABSTRACT

Chromosomal translocations involving the TCR loci represent one of the most recurrent oncogenic hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) and are generally believed to result from illegitimate V(D)J recombination events. However, molecular characterization and evaluation of the extent of recombinase involvement at the TCR-oncogene junction has not been fully evaluated. In the present study, screening for TCRß and TCRα/δ translocations by FISH and ligation-mediated PCR in 280 T-ALLs allowed the identification of 4 previously unreported TCR-translocated oncogene partners: GNAG, LEF1, NKX2-4, and IL2RB. Molecular mapping of genomic junctions from TCR translocations showed that the majority of oncogenic partner breakpoints are not recombinase mediated and that the regulatory elements predominantly used to drive oncogene expression differ markedly in TCRß (which are exclusively enhancer driven) and TCRα/δ (which use an enhancer-independent cryptic internal promoter) translocations. Our data also imply that oncogene activation takes place at a very immature stage of thymic development, when Dδ2-Dδ3/Dδ3-Jδ1 and Dß-Jß rearrangements occur, whereas the bulk leukemic maturation arrest occurs at a much later (cortical) stage. These observations have implications for T-ALL therapy, because the preleukemic early thymic clonogenic population needs to be eradicated and its disappearance monitored.


Subject(s)
Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/genetics , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics , Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics , Oncogenes/physiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recombination, Genetic/genetics , Translocation, Genetic , Adolescent , Adult , Base Sequence , Child , Child, Preschool , Chromosome Mapping , DNA, Neoplasm/genetics , Humans , In Situ Hybridization, Fluorescence , Infant , Middle Aged , Molecular Sequence Data , Real-Time Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , Young Adult
2.
Mol Genet Genomic Med ; 8(3): e1114, 2020 03.
Article in English | MEDLINE | ID: mdl-31985172

ABSTRACT

BACKGROUND: Structural variants (SVs) include copy number variants (CNVs) and apparently balanced chromosomal rearrangements (ABCRs). Genome sequencing (GS) enables SV detection at base-pair resolution, but the use of short-read sequencing is limited by repetitive sequences, and long-read approaches are not yet validated for diagnosis. Recently, 10X Genomics proposed Chromium, a technology providing linked-reads to reconstruct long DNA fragments and which could represent a good alternative. No study has compared short-read to linked-read technologies to detect SVs in a constitutional diagnostic setting yet. The aim of this work was to determine whether the 10X Genomics technology enables better detection and comprehension of SVs than short-read WGS. METHODS: We included 13 patients carrying various SVs. Whole genome analyses were performed using paired-end HiSeq X sequencing with (linked-read strategy) or without (short-read strategy) Chromium library preparation. Two different bioinformatic pipelines were used: Variants are called using BreakDancer for short-read strategy and LongRanger for long-read strategy. Variant interpretations were first blinded. RESULTS: The short-read strategy allowed diagnosis of known SV in 10/13 patients. After unblinding, the linked-read strategy identified 10/13 SVs, including one (patient 7) missed by the short-read strategy. CONCLUSION: In conclusion, regarding the results of this study, 10X Genomics solution did not improve the detection and characterization of SV.


Subject(s)
Chromosome Disorders/genetics , Cytogenetics/methods , Genetic Testing/methods , Genomic Structural Variation , Whole Genome Sequencing/methods , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Chromosome Disorders/diagnosis , Germ-Line Mutation , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics
SELECTION OF CITATIONS
SEARCH DETAIL