Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 18(12): 1299-1309, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28967880

ABSTRACT

NLRX1 is unique among the nucleotide-binding-domain and leucine-rich-repeat (NLR) proteins in its mitochondrial localization and ability to negatively regulate antiviral innate immunity dependent on the adaptors MAVS and STING. However, some studies have suggested a positive regulatory role for NLRX1 in inducing antiviral responses. We found that NLRX1 exerted opposing regulatory effects on viral activation of the transcription factors IRF1 and IRF3, which might potentially explain such contradictory results. Whereas NLRX1 suppressed MAVS-mediated activation of IRF3, it conversely facilitated virus-induced increases in IRF1 expression and thereby enhanced control of viral infection. NLRX1 had a minimal effect on the transcription of IRF1 mediated by the transcription factor NF-kB and regulated the abundance of IRF1 post-transcriptionally by preventing translational shutdown mediated by the double-stranded RNA (dsRNA)-activated kinase PKR and thereby allowed virus-induced increases in the abundance of IRF1 protein.


Subject(s)
Hepacivirus/immunology , Hepatitis C/immunology , Immunity, Innate/immunology , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-3/immunology , Mitochondrial Proteins/immunology , Adaptor Proteins, Signal Transducing/immunology , Animals , Cells, Cultured , Enzyme Activation/immunology , HEK293 Cells , Hepatitis C/virology , Hepatocytes/immunology , Hepatocytes/virology , Humans , Interferon Regulatory Factor-1/metabolism , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , NF-kappa B/metabolism , RNA, Viral/genetics , Sendai virus/immunology , eIF-2 Kinase/metabolism
2.
J Virol ; 98(4): e0005724, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501662

ABSTRACT

Relatively little is known of the mechanisms underlying hepatitis A virus (HAV) genome replication. Unlike other well-studied picornaviruses, HAV RNA replication requires the zinc finger protein ZCCHC14 and non-canonical TENT4 poly(A) polymerases with which it forms a complex. The ZCCHC14-TENT4 complex binds to a stem-loop located within the internal ribosome entry site (IRES) in the 5' untranslated RNA (5'UTR) and is essential for viral RNA synthesis, but the underlying mechanism is unknown. Here, we describe how different ZCCHC14 domains contribute to its RNA-binding, TENT4-binding, and HAV host factor activities. We show that the RNA-binding activity of ZCCHC14 requires both a sterile alpha motif (SAM) and a downstream unstructured domain (D4) and that ZCCHC14 contains two TENT4-binding sites: one at the N-terminus and the other around D4. Both RNA-binding and TENT4-binding are required for HAV host factor activity of ZCCHC14. We also demonstrate that the location of the ZCCHC14-binding site within the 5'UTR is critical for its function. Our study provides a novel insight into the function of ZCCHC14 and helps elucidate the mechanism of the ZCCHC14-TENT4 complex in HAV replication.IMPORTANCEThe zinc finger protein ZCCHC14 is an essential host factor for both hepatitis A virus (HAV) and hepatitis B virus (HBV). It recruits the non-canonical TENT4 poly(A) polymerases to viral RNAs and most likely also a subset of cellular mRNAs. Little is known about the details of these interactions. We show here the functional domains of ZCCHC14 that are involved in binding to HAV RNA and interactions with TENT4 and describe previously unrecognized peptide sequences that are critical for the HAV host factor activity of ZCCHC14. Our study advances the understanding of the ZCCHC14-TENT4 complex and how it functions in regulating viral and cellular RNAs.


Subject(s)
Hepatitis A virus , Hepatitis A , Intrinsically Disordered Proteins , Transcription Factors , Humans , 5' Untranslated Regions , Hepatitis A/metabolism , Hepatitis A/virology , Hepatitis A virus/metabolism , Protein Biosynthesis , RNA, Viral/metabolism , Transcription Factors/metabolism , Virus Replication , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism
3.
Immunity ; 44(4): 725-7, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27096315

ABSTRACT

Non-alcoholic fatty liver disease is associated with hepatocellular carcinoma. In the March 10 issue of Nature, Greten and colleagues report that this metabolic disruption affects tumor surveillance by depleting CD4+ T helper cells through lipotoxic mechanisms associated with NAFLD.


Subject(s)
Carcinoma, Hepatocellular/immunology , Cell Survival/immunology , Immunologic Surveillance/immunology , Liver Neoplasms/immunology , Non-alcoholic Fatty Liver Disease/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Humans , Mice , Non-alcoholic Fatty Liver Disease/pathology
4.
Nucleic Acids Res ; 51(22): 12397-12413, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37941151

ABSTRACT

Hepatitis C virus (HCV) requires two cellular factors, microRNA-122 (miR-122) and poly(C) binding protein 2 (PCBP2), for optimal replication. These host factors compete for binding to the 5' end of the single-stranded RNA genome to regulate the viral replication cycle. To understand how they interact with the RNA, we measured binding affinities of both factors for an RNA probe representing the 5' 45 nucleotides of the HCV genome (HCV45). Isothermal titration calorimetry revealed two, unequal miR-122 binding sites in HCV45, high-affinity (S1) and low-affinity (S2), differing roughly 100-fold in binding affinity. PCBP2 binds a site overlapping S2 with affinity similar to miR-122 binding to S2. PCBP2 circularizes the genome by also binding to the 3' UTR, bridging the 5' and 3' ends of the genome. By competing with PCBP2 for binding at S2, miR-122 disrupts PCBP2-mediated genome circularization. We show that the viral RNA-dependent RNA polymerase, NS5B, also binds to HCV45, and that the binding affinity of NS5B is increased in the presence of miR-122, suggesting miR-122 promotes recruitment of the polymerase. We propose that competition between miR-122 and PCBP2 for HCV45 functions as a translation-to-replication switch, determining whether the RNA genome templates protein synthesis or RNA replication.


Subject(s)
Hepacivirus , Hepatitis C , MicroRNAs , Humans , 5' Untranslated Regions , Carrier Proteins/genetics , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Virus Replication/genetics
5.
Nucleic Acids Res ; 51(9): 4451-4466, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37094077

ABSTRACT

Interferon regulatory factor 1 (IRF1) is a critical component of cell-intrinsic innate immunity that regulates both constitutive and induced antiviral defenses. Due to its short half-life, IRF1 function is generally considered to be regulated by its synthesis. However, how IRF1 activity is controlled post-translationally has remained poorly characterized. Here, we employed a proteomics approach to identify proteins interacting with IRF1, and found that CSNK2B, a regulatory subunit of casein kinase 2, interacts directly with IRF1 and constitutively modulates its transcriptional activity. Genome-wide CUT&RUN analysis of IRF1 binding loci revealed that CSNK2B acts generally to enhance the binding of IRF1 to chromatin, thereby enhancing transcription of key antiviral genes, such as PLAAT4 (also known as RARRES3/RIG1/TIG3). On the other hand, depleting CSNK2B triggered abnormal accumulation of IRF1 at AFAP1 loci, thereby down-regulating transcription of AFAP1, revealing contrary effects of CSNK2B on IRF1 binding at different loci. AFAP1 encodes an actin crosslinking factor that mediates Src activation. Importantly, CSNK2B was also found to mediate phosphorylation-dependent activation of AFAP1-Src signaling and exert suppressive effects against flaviviruses, including dengue virus. These findings reveal a previously unappreciated mode of IRF1 regulation and identify important effector genes mediating multiple cellular functions governed by CSNK2B and IRF1.


Subject(s)
Casein Kinase II , DNA , Interferon Regulatory Factor-1 , Virus Diseases , Chromatin , DNA/genetics , Interferon Regulatory Factor-1/genetics , Signal Transduction/genetics , Humans , Casein Kinase II/genetics , Immunity, Innate , Virus Diseases/genetics , Virus Diseases/immunology
6.
Proc Natl Acad Sci U S A ; 119(28): e2204511119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867748

ABSTRACT

Despite excellent vaccines, resurgent outbreaks of hepatitis A have caused thousands of hospitalizations and hundreds of deaths within the United States in recent years. There is no effective antiviral therapy for hepatitis A, and many aspects of the hepatitis A virus (HAV) replication cycle remain to be elucidated. Replication requires the zinc finger protein ZCCHC14 and noncanonical TENT4 poly(A) polymerases with which it associates, but the underlying mechanism is unknown. Here, we show that ZCCHC14 and TENT4A/B are required for viral RNA synthesis following translation of the viral genome in infected cells. Cross-linking immunoprecipitation sequencing (CLIP-seq) experiments revealed that ZCCHC14 binds a small stem-loop in the HAV 5' untranslated RNA possessing a Smaug recognition-like pentaloop to which it recruits TENT4. TENT4 polymerases lengthen and stabilize the 3' poly(A) tails of some cellular and viral mRNAs, but the chemical inhibition of TENT4A/B with the dihydroquinolizinone RG7834 had no impact on the length of the HAV 3' poly(A) tail, stability of HAV RNA, or cap-independent translation of the viral genome. By contrast, RG7834 inhibited the incorporation of 5-ethynyl uridine into nascent HAV RNA, indicating that TENT4A/B function in viral RNA synthesis. Consistent with potent in vitro antiviral activity against HAV (IC50 6.11 nM), orally administered RG7834 completely blocked HAV infection in Ifnar1-/- mice, and sharply reduced serum alanine aminotransferase activities, hepatocyte apoptosis, and intrahepatic inflammatory cell infiltrates in mice with acute hepatitis A. These results reveal requirements for ZCCHC14-TENT4A/B in hepatovirus RNA synthesis, and suggest that TENT4A/B inhibitors may be useful for preventing or treating hepatitis A in humans.


Subject(s)
Chromosomal Proteins, Non-Histone , DNA-Directed DNA Polymerase , Hepatitis A virus , Hepatitis A , Intrinsically Disordered Proteins , RNA Nucleotidyltransferases , RNA, Viral , Virus Replication , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chromosomal Proteins, Non-Histone/metabolism , DNA-Directed DNA Polymerase/metabolism , Hepatitis A/drug therapy , Hepatitis A/metabolism , Hepatitis A/virology , Hepatitis A virus/drug effects , Hepatitis A virus/genetics , Hepatitis A virus/physiology , Humans , Intrinsically Disordered Proteins/metabolism , Mice , Mice, Mutant Strains , RNA Nucleotidyltransferases/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Receptor, Interferon alpha-beta/genetics , Virus Replication/drug effects
7.
PLoS Pathog ; 18(8): e1010543, 2022 08.
Article in English | MEDLINE | ID: mdl-35969644

ABSTRACT

Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Hepatitis A virus , Animals , Calcium-Binding Proteins/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatitis A virus/genetics , Hepatitis A virus/metabolism , Mammals , Viral Proteins/metabolism
8.
Bioorg Med Chem Lett ; 102: 129680, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428537

ABSTRACT

Dihydroquinolizinones (DHQs) that inhibit cellular polyadenylating polymerases 5 and 7 (PAPD5 & 7), such as RG7834, have been shown to inhibit both hepatitis A (HAV) and hepatitis B virus (HBV) in vitro and in vivo. In this report, we describe RG7834-based proteolysis-targeting chimeras (PROTACs), such as compound 12b, (6S)-9-((1-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-21-oxo-3,6,9,12,15,18-hexaoxa-22-azapentacosan-25-yl)oxy)-6-isopropyl-10-methoxy-2-oxo-6,7-dihydro-2H-pyrido[2,1-a]isoquinoline-3-carboxylic acid. The PROTAC DHQs described here inhibited an HAV reporter virus in vitro with an IC50 of 277 nM. Although the PROTAC DHQs were also inhibitory to HBV, their activities were substantially less potent against HBV in vitro, being in the 10 to 20 µM range, based on the reduction of HBsAg and HBV mRNA levels. Importantly, unlike RG7834, the incubation of cells in vitro with PROTAC DHQ 12b resulted in the degradation of PAPD5, as expected for a PROTAC compound, but curiously not PAPD7. PAPD5 polypeptide degradation was prevented when a proteasome inhibitor, epoxomicin, was used, indicating that proteasome mediated proteolysis was associated with the observed activities of 12b. Taken together, these data show that 12b is the first example of a PROTAC that suppresses both HAV and HBV that is based on a small molecule warhead. The possibility that it has mechanisms that differ from its parent compound, RG7834, and has clinical value, is discussed.


Subject(s)
Hepatitis A virus , Hepatitis B virus , Proteolysis , Proteasome Endopeptidase Complex
9.
J Hepatol ; 78(2): 271-280, 2023 02.
Article in English | MEDLINE | ID: mdl-36152761

ABSTRACT

BACKGROUND & AIMS: Consistent with its relatively narrow host species range, hepatitis A virus (HAV) cannot infect C57BL/6 mice. However, in Mavs-/- mice with genetic deficiency of the innate immune signaling adaptor MAVS, HAV replicates robustly in the absence of disease. The HAV 3ABC protease cleaves MAVS in human cells, thereby disrupting virus-induced IFN responses, but it cannot cleave murine MAVS (mMAVS) due to sequence differences at the site of scission. Here, we sought to elucidate the role of 3ABC MAVS cleavage in determining HAV pathogenesis and host species range. METHODS: Using CRISPR/Cas9 gene editing, we established two independent lineages of C57BL/6 mice with knock-in mutations altering two amino acids in mMAVS ('mMAVS-VS'), rendering it susceptible to 3ABC cleavage without loss of signaling function. We challenged homozygous Mavsvs/vs mice with HAV, and compared infection outcomes with C57BL/6 and genetically deficient Mavs-/- mice. RESULTS: The humanized murine mMAVS-VS protein was cleaved as efficiently as human MAVS when co-expressed with 3ABC in Huh-7 cells. In embyronic fibroblasts from Mavsvs/vs mice, mMAVS-VS was cleaved by ectopically expressed 3ABC, significantly disrupting Sendai virus-induced IFN responses. However, in contrast to Mavs-/- mice with genetic MAVS deficiency, HAV failed to establish infection in Mavsvs/vs mice, even with additional genetic knockout of Trif or Irf1. Nonetheless, when crossed with permissive Ifnar1-/- mice lacking type I IFN receptors, Mavsvs/vsIfnar1-/- mice demonstrated enhanced viral replication coupled with significant reductions in serum alanine aminotransferase, hepatocellular apoptosis, and intrahepatic inflammatory cell infiltrates compared with Ifnar1-/- mice. CONCLUSIONS: MAVS cleavage by 3ABC boosts viral replication and disrupts disease pathogenesis, but it is not by itself sufficient to break the host-species barrier to HAV infection in mice. IMPACT AND IMPLICATIONS: The limited host range of human hepatitis viruses could be explained by species-specific viral strategies that disrupt innate immune responses. Both hepatitis A virus (HAV) and hepatitis C virus express viral proteases that cleave the innate immune adaptor protein MAVS, in human but not mouse cells. However, the impact of this immune evasion strategy has never been assessed in vivo. Here we show that HAV 3ABC protease cleavage of MAVS enhances viral replication and lessens liver inflammation in mice lacking interferon receptors, but that it is insufficient by itself to overcome the cross-species barrier to infection in mice. These results enhance our understanding of how hepatitis viruses interact with the host and their impact on innate immune responses.


Subject(s)
Hepatitis A virus , Hepatitis A , Animals , Mice , Humans , Hepatitis A virus/genetics , Peptide Hydrolases , Mice, Inbred C57BL , Immunity, Innate , Viral Proteases
10.
J Virol ; 96(21): e0119522, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36286484

ABSTRACT

Hepatoviruses are atypical hepatotropic picornaviruses that are released from infected cells without lysis in small membranous vesicles. These exosome-like, quasi-enveloped virions (eHAV) are infectious and the only form of hepatitis A virus (HAV) found circulating in blood during acute infection. eHAV is released through multivesicular endosomes in a process dependent on endosomal sorting complexes required for transport (ESCRT). Capsid protein interactions with the ESCRT-associated Bro1 domain proteins, ALG-2-interacting protein X (ALIX) and His domain-containing protein tyrosine phosphatase (HD-PTP), which are both recruited to the pX domain of 1D (VP1pX), are critical for this process. Previous proteomics studies suggest pX also binds the HECT domain, NEDD4 family E3 ubiquitin ligase, ITCH. Here, we confirm this interaction and show ITCH binds directly to the carboxy-terminal half of pX from both human and bat hepatoviruses independently of ALIX. A small chemical compound (compound 5) designed to disrupt interactions between WW domains of NEDD4 ligases and substrate molecules blocked ITCH binding to pX and demonstrated substantial antiviral activity against HAV. CRISPR deletion or small interfering RNA (siRNA) knockdown of ITCH expression inhibited the release of a self-assembling nanocage protein fused to pX and also impaired the release of eHAV from infected cells. The release could be rescued by overexpression of wild-type ITCH, but not a catalytically inactive ITCH mutant. Despite this, we found no evidence that ITCH ubiquitylates pX or that eHAV release is strongly dependent upon Lys residues in pX. These data indicate ITCH plays an important role in the ESCRT-dependent release of quasi-enveloped hepatovirus, although the substrate molecule targeted for ubiquitylation remains to be determined. IMPORTANCE Mechanisms underlying the cellular release of quasi-enveloped hepatoviruses are only partially understood, yet play a crucial role in the pathogenesis of this common agent of viral hepatitis. Multiple NEDD4 family E3 ubiquitin ligases, including ITCH, have been reported to promote the budding of conventional enveloped viruses but are not known to function in the release of HAV or other picornaviruses from infected cells. Here, we show that the unique C-terminal pX extension of the VP1 capsid protein of HAV interacts directly with ITCH and that ITCH promotes eHAV release in a manner analogous to its role in budding of some conventional enveloped viruses. The catalytic activity of ITCH is required for efficient eHAV release and may potentially function to ubiquitylate the viral capsid or activate ESCRT components.


Subject(s)
Hepatitis A virus , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Hepatovirus/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatitis A virus/physiology , Nedd4 Ubiquitin Protein Ligases/metabolism
11.
J Virol ; 96(23): e0149622, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36354341

ABSTRACT

Although hepatitis A virus (HAV) is associated only with acute hepatitis in humans, HAV RNA persists within the liver for months following resolution of liver inflammation and cessation of fecal virus shedding in chimpanzees and murine models of hepatitis A. Here, we confirm striking differences in the kinetics of HAV RNA clearance from liver versus serum and feces in infected Ifnar1-/- mice and investigate the nature of viral RNA persisting in the liver following normalization of serum alanine aminotransferase (ALT) levels. Fecal shedding of virus produced in hepatocytes declined >3,000-fold between its peak at day 14 and day 126, whereas intrahepatic HAV RNA declined only 32-fold by day 154. Viral RNA was identified within hepatocytes 3 to 4 months after inoculation and was associated with membranes, banding between 1.07 and 1.14 g/cm3 in isopycnic iodixanol gradients. Gradient fractions containing HAV RNA demonstrated no infectivity when inoculated into naive mice but contained neutralizing anti-HAV antibody. Depleting CD4+ or CD8+ T cells at this late point in infection had no effect on viral RNA abundance in the liver, whereas clodronate-liposome depletion of macrophages between days 110 and 120 postinoculation resulted in a striking recrudescence of fecal virus shedding and the reappearance of viral RNA in serum coupled with reductions in intra-hepatic Ifnγ, Tnfα, Ccl5, and other chemokine transcripts. Our data suggest that replication-competent HAV RNA persists for months within the liver in the presence of neutralizing antibody following resolution of acute hepatitis in Ifnar1-/- mice and that macrophages play a key role in viral control late in infection. IMPORTANCE HAV RNA persists in the liver of infected chimpanzees and interferon receptor-deficient Ifnar1-/- mice for many months after neutralizing antibodies appear, virus has been cleared from the blood, and fecal virus shedding has terminated. Here, we show this viral RNA is located within hepatocytes and that the depletion of macrophages months after the resolution of hepatic inflammation restores fecal virus shedding and circulating viral RNA. Our study identifies an important role for macrophages in virus control following resolution of acute hepatitis A in Ifnar1-/- mice and may have relevance to relapsing hepatitis A in humans.


Subject(s)
Hepatitis A virus , Hepatitis A , Macrophages , Virus Shedding , Animals , Mice , CD8-Positive T-Lymphocytes , Feces , Hepatitis A virus/physiology , Inflammation , Macrophages/virology , Receptor, Interferon alpha-beta/genetics , RNA, Viral/genetics , Mice, Knockout
12.
PLoS Pathog ; 17(1): e1009220, 2021 01.
Article in English | MEDLINE | ID: mdl-33476326

ABSTRACT

The eponymous member of the interferon regulatory factor (IRF) family, IRF1, was originally identified as a nuclear factor that binds and activates the promoters of type I interferon genes. However, subsequent studies using genetic knockouts or RNAi-mediated depletion of IRF1 provide a much broader view, linking IRF1 to a wide range of functions in protection against invading pathogens. Conserved throughout vertebrate evolution, IRF1 has been shown in recent years to mediate constitutive as well as inducible host defenses against a variety of viruses. Fine-tuning of these ancient IRF1-mediated host defenses, and countering strategies by pathogens to disarm IRF1, play crucial roles in pathogenesis and determining the outcome of infection.


Subject(s)
Communicable Diseases/immunology , Communicable Diseases/therapy , Host-Pathogen Interactions/immunology , Immunity, Innate/immunology , Interferon Regulatory Factor-1/metabolism , Animals , Communicable Diseases/metabolism , Humans , Interferon Regulatory Factor-1/immunology
13.
PLoS Pathog ; 17(9): e1009960, 2021 09.
Article in English | MEDLINE | ID: mdl-34591933

ABSTRACT

HAV-infected Ifnar1-/- mice recapitulate many of the cardinal features of hepatitis A in humans, including serum alanine aminotransferase (ALT) elevation, hepatocellular apoptosis, and liver inflammation. Previous studies implicate MAVS-IRF3 signaling in pathogenesis, but leave unresolved the role of IRF3-mediated transcription versus the non-transcriptional, pro-apoptotic activity of ubiquitylated IRF3. Here, we compare the intrahepatic transcriptomes of infected versus naïve Mavs-/- and Ifnar1-/- mice using high-throughput sequencing, and identify IRF3-mediated transcriptional responses associated with hepatocyte apoptosis and liver inflammation. Infection was transcriptionally silent in Mavs-/- mice, in which HAV replicates robustly within the liver without inducing inflammation or hepatocellular apoptosis. By contrast, infection resulted in the upregulation of hundreds of genes in Ifnar1-/- mice that develop acute hepatitis closely modeling human disease. Upregulated genes included pattern recognition receptors, interferons, chemokines, cytokines and other interferon-stimulated genes. Compared with Ifnar1-/- mice, HAV-induced inflammation was markedly attenuated and there were few apoptotic hepatocytes in livers of infected Irf3S1/S1Ifnar1-/- mice in which IRF3 is transcriptionally-inactive due to alanine substitutions at Ser-388 and Ser-390. Although transcriptome profiling revealed remarkably similar sets of genes induced in Irf3S1/S1Ifnar1-/- and Ifnar1-/- mice, a subset of genes was differentially expressed in relation to the severity of the liver injury. Prominent among these were both type 1 and type III interferons and interferon-responsive genes associated previously with apoptosis, including multiple members of the ISG12 and 2'-5' oligoadenylate synthetase families. Ifnl3 and Ifnl2 transcript abundance correlated strongly with disease severity, but mice with dual type 1 and type III interferon receptor deficiency remained fully susceptible to liver injury. Collectively, our data show that IRF3-mediated transcription is required for HAV-induced liver injury in mice and identify key IRF3-responsive genes associated with pathogenicity, providing a clear distinction from the transcription-independent role of IRF3 in liver injury following binge exposure to alcohol.


Subject(s)
Hepatitis A/metabolism , Hepatitis A/pathology , Interferon Regulatory Factor-3/metabolism , Liver/pathology , Animals , Disease Models, Animal , Mice , Mice, Knockout , Transcriptome
14.
Proc Natl Acad Sci U S A ; 117(44): 27598-27607, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33060297

ABSTRACT

Human rhinoviruses (RVs) are positive-strand RNA viruses that cause respiratory tract disease in children and adults. Here we show that the innate immune signaling protein STING is required for efficient replication of members of two distinct RV species, RV-A and RV-C. The host factor activity of STING was identified in a genome-wide RNA interference (RNAi) screen and confirmed in primary human small airway epithelial cells. Replication of RV-A serotypes was strictly dependent on STING, whereas RV-B serotypes were notably less dependent. Subgenomic RV-A and RV-C RNA replicons failed to amplify in the absence of STING, revealing it to be required for a step in RNA replication. STING was expressed on phosphatidylinositol 4-phosphate (PI4P)-enriched membranes and was enriched in RV-A16 compared with RV-B14 replication organelles isolated in isopycnic gradients. The host factor activity of STING was species-specific, as murine STING (mSTING) did not rescue RV-A16 replication in STING-deficient cells. This species specificity mapped primarily to the cytoplasmic, ligand-binding domain of STING. Mouse-adaptive mutations in the RV-A16 2C protein allowed for robust replication in cells expressing mSTING, suggesting a role for 2C in recruiting STING to RV-A replication organelles. Palmitoylation of STING was not required for RV-A16 replication, nor was the C-terminal tail of STING that mediates IRF3 signaling. Despite co-opting STING to promote its replication, interferon signaling in response to STING agonists remained intact in RV-A16 infected cells. These data demonstrate a surprising requirement for a key host mediator of innate immunity to DNA viruses in the life cycle of a small pathogenic RNA virus.


Subject(s)
Enterovirus/pathogenicity , Host-Pathogen Interactions/immunology , Membrane Proteins/metabolism , Virus Replication/immunology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Common Cold/immunology , Common Cold/virology , Enterovirus/genetics , Enterovirus/immunology , Enterovirus/metabolism , HeLa Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Lipoylation , Membrane Proteins/agonists , Mutation , Protein Domains/genetics , Signal Transduction , Species Specificity , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
15.
J Virol ; 95(11): e0005821, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33692213

ABSTRACT

Iminosugar compounds are monosaccharide mimetics with broad but generally weak antiviral activities related to inhibition of enzymes involved in glycobiology. Miglustat (N-butyl-1-deoxynojirimycin), which is approved for the treatment of lipid storage diseases in humans, and UV-4 [N-(9-methoxynonyl)-1-deoxynojirimycin] inhibit the replication of hepatitis A virus (HAV) in cell culture (50% inhibitory concentrations [IC50s] of 32.13 µM and 8.05 µM, respectively) by blocking the synthesis of gangliosides essential for HAV cell entry. We used a murine model of hepatitis A and targeted mass spectrometry to assess the capacity of these compounds to deplete hepatic gangliosides and modify the course of HAV infection in vivo. Miglustat, given by gavage to Ifnar1-/- mice (4,800 mg/kg of body weight/day) depleted hepatic gangliosides by 69 to 75% but caused substantial gastrointestinal toxicity and failed to prevent viral infection. UV-4, similarly administered in high doses (400 mg/kg/day), was well tolerated but depleted hepatic gangliosides by only 20% after 14 days. UV-4 depletion of gangliosides varied by class. Several GM2 species were paradoxically increased, likely due to inhibition of ß-glucosidases that degrade gangliosides. Both compounds enhanced, rather than reduced, virus replication. Nonetheless, both iminosugars had surprising anti-inflammatory effects, blocking the accumulation of inflammatory cells within the liver. UV-4 treatment also resulted in a decrease in serum alanine aminotransferase (ALT) elevations associated with acute hepatitis A. These anti-inflammatory effects may result from iminosugar inhibition of cellular α-glucosidases, leading to impaired maturation of glycan moieties of chemokine and cytokine receptors, and point to the potential importance of paracrine signaling in the pathogenesis of acute hepatitis A. IMPORTANCE Hepatitis A virus (HAV) is a common cause of viral hepatitis. Iminosugar compounds block its replication in cultured cells by inhibiting the synthesis of gangliosides required for HAV cell entry but have not been tested for their ability to prevent or treat hepatitis A in vivo. We show that high doses of the iminosugars miglustat and UV-4 fail to deplete gangliosides sufficiently to block HAV infection in mice lacking a key interferon receptor. These compounds nonetheless have striking anti-inflammatory effects on the HAV-infected liver, reducing the severity of hepatitis despite enhancing chemokine and cytokine expression resulting from hepatocyte-intrinsic antiviral responses. We propose that iminosugar inhibition of cellular α-glucosidases impairs the maturation of glycan moieties of chemokine and cytokine receptors required for effective signaling. These data highlight the potential importance of paracrine signaling pathways in the inflammatory response to HAV and add to our understanding of HAV pathogenesis in mice.


Subject(s)
Gangliosides , Glycoside Hydrolase Inhibitors , Hepatitis A , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Gangliosides/metabolism , Hepatitis A/drug therapy , Hepatitis A virus , Inflammation/drug therapy , Mice , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Receptors, Interferon , Virus Internalization , alpha-Glucosidases/pharmacology
16.
J Hepatol ; 75(6): 1323-1334, 2021 12.
Article in English | MEDLINE | ID: mdl-34331968

ABSTRACT

BACKGROUND & AIMS: Hepatitis A virus (HAV) is a common cause of enterically transmitted viral hepatitis. In non-immune individuals, infection results in typically transient but occasionally fulminant and fatal inflammatory liver injury. Virus-specific T cell frequencies peak when liver damage is at its zenith, leading to the prevalent notion that T cells exacerbate liver disease, as suspected for other hepatotropic virus infections. However, the overall contribution of T cells to the control of HAV and the pathogenesis of hepatitis A is unclear and has been impeded by a historic lack of small animal models. METHODS: Ifnar1-/- mice are highly permissive for HAV and develop pathogenesis that recapitulates many features of hepatitis A. Using this model, we identified HAV-specific CD8+ and CD4+ T cells by epitope mapping, and then used tetramers and functional assays to quantify T cells in the liver at multiple times after infection. We assessed the relationships between HAV-specific T cell frequency, viral RNA amounts, and liver pathogenesis. RESULTS: A large population of virus-specific T cells accumulated within the livers of Ifnar1-/- mice during the first 1-2 weeks of infection and persisted over time. HAV replication was enhanced and liver disease exacerbated when mice were depleted of T cells. Conversely, immunization with a peptide vaccine increased virus-specific CD8+ T cell frequencies in the liver, reduced viral RNA abundance, and lessened liver injury. CONCLUSION: These data show that T cells protect against HAV-mediated liver injury and can be targeted to improve liver health. LAY SUMMARY: Hepatitis A virus is a leading cause of acute viral hepatitis worldwide. T cells were thought to contribute to liver injury during acute infection. We now show that virus-specific T cells protect against infection and limit liver injury.


Subject(s)
Hepatitis A/prevention & control , Liver Diseases/prevention & control , T-Lymphocytes/metabolism , Analysis of Variance , Animals , Disease Models, Animal , Hepatitis A/drug therapy , Hepatitis A/epidemiology , Hepatitis A virus/drug effects , Hepatitis A virus/pathogenicity , Liver Diseases/drug therapy , Liver Diseases/epidemiology , Mice , North Carolina , Statistics, Nonparametric , T-Lymphocytes/physiology
17.
Nucleic Acids Res ; 47(12): 6411-6424, 2019 07 09.
Article in English | MEDLINE | ID: mdl-30997501

ABSTRACT

The liver-specific microRNA, miR-122, is an essential host factor for replication of the hepatitis C virus (HCV). miR-122 stabilizes the positive-strand HCV RNA genome and promotes its synthesis by binding two sites (S1 and S2) near its 5' end in association with Ago2. Ago2 is essential for both host factor activities, but whether other host proteins are involved is unknown. Using an unbiased quantitative proteomics screen, we identified the TNRC6 protein paralogs, TNRC6B and TNRC6C, as functionally important but redundant components of the miR-122/Ago2 host factor complex. Doubly depleting TNRC6B and TNRC6C proteins reduced HCV replication in human hepatoma cells, dampening miR-122 stimulation of viral RNA synthesis without reducing the stability or translational activity of the viral RNA. TNRC6B/C were required for optimal miR-122 host factor activity only when S1 was able to bind miR-122, and restricted replication when S1 was mutated and only S2 bound by miR-122. TNRC6B/C preferentially associated with S1, and TNRC6B/C depletion enhanced Ago2 association at S2. Collectively, these data suggest a model in which TNRC6B/C regulate the assembly of miR-122/Ago complexes on HCV RNA, preferentially directing miR-122/Ago2 to S1 while restricting its association with S2, thereby fine-tuning the spatial organization of miR-122/Ago2 complexes on the viral genome.


Subject(s)
Argonaute Proteins/metabolism , Hepacivirus/physiology , MicroRNAs/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Virus Replication , 5' Untranslated Regions , Binding Sites , Cell Line , Hep G2 Cells , Hepacivirus/genetics , Hepacivirus/metabolism , Humans , Protein Binding , RNA, Viral/biosynthesis , RNA-Binding Proteins/physiology
18.
Proc Natl Acad Sci U S A ; 114(25): 6587-6592, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28490497

ABSTRACT

The Picornaviridae are a diverse family of RNA viruses including many pathogens of medical and veterinary importance. Classically considered "nonenveloped," recent studies show that some picornaviruses, notably hepatitis A virus (HAV; genus Hepatovirus) and some members of the Enterovirus genus, are released from cells nonlytically in membranous vesicles. To better understand the biogenesis of quasi-enveloped HAV (eHAV) virions, we conducted a quantitative proteomics analysis of eHAV purified from cell-culture supernatant fluids by isopycnic ultracentrifugation. Amino acid-coded mass tagging (AACT) with stable isotopes followed by tandem mass spectrometry sequencing and AACT quantitation of peptides provided unambiguous identification of proteins associated with eHAV versus unrelated extracellular vesicles with similar buoyant density. Multiple peptides were identified from HAV capsid proteins (53.7% coverage), but none from nonstructural proteins, indicating capsids are packaged as cargo into eHAV vesicles via a highly specific sorting process. Other eHAV-associated proteins (n = 105) were significantly enriched for components of the endolysosomal system (>60%, P < 0.001) and included many common exosome-associated proteins such as the tetraspanin CD9 and dipeptidyl peptidase 4 (DPP4) along with multiple endosomal sorting complex required for transport III (ESCRT-III)-associated proteins. Immunoprecipitation confirmed that DPP4 is displayed on the surface of eHAV produced in cell culture or present in sera from humans with acute hepatitis A. No LC3-related peptides were identified by mass spectrometry. RNAi depletion studies confirmed that ESCRT-III proteins, particularly CHMP2A, function in eHAV biogenesis. In addition to identifying surface markers of eHAV vesicles, the results support an exosome-like mechanism of eHAV egress involving endosomal budding of HAV capsids into multivesicular bodies.


Subject(s)
Capsid Proteins/metabolism , Hepatitis A virus/metabolism , Amino Acids/metabolism , Cell Line , Cell Line, Tumor , Dipeptidyl Peptidase 4/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Exosomes/metabolism , Humans , Multivesicular Bodies/metabolism , Proteomics/methods , Tetraspanins/metabolism , Virion/metabolism , Virus Release/physiology
19.
J Hepatol ; 71(1): 25-34, 2019 07.
Article in English | MEDLINE | ID: mdl-30876947

ABSTRACT

BACKGROUND & AIMS: Unlike other hepatitis viruses that have infected primates for millions of years, hepatitis A virus (HAV) likely entered human populations only 10-12 thousand years ago after jumping from a rodent host. The phylogeny of modern hepatoviruses that infect rodents and bats suggest that multiple similar host shifts have occurred in the past. The factors determining such shifts are unknown, but the capacity to overcome innate antiviral responses in a foreign species is likely key. METHODS: We assessed the capacity of diverse hepatovirus 3ABC proteases to cleave mitochondrial antiviral signaling protein (MAVS) and disrupt antiviral signaling in HEK293 and human hepatocyte-derived cell lines. We also applied maximum-likelihood and Bayesian algorithms to identify sites of diversifying selection in MAVS orthologs from 75 chiropteran, rodent and primate species. RESULTS: 3ABC proteases from bat, but not rodent hepatoviruses efficiently cleaved human MAVS at Glu463/Gly464, disrupting virus activation of the interferon-ß promoter, whereas human HAV 3ABC cleaved at Gln427/Val428. In contrast, MAVS orthologs from rodents and bats were resistant to cleavage by 3ABC proteases of cognate hepatoviruses and in several cases human HAV. A search for diversifying selection among MAVS orthologs from all 3 orders revealed 90 of ∼540 residues to be under positive selection, including residues in chiropteran MAVS that align with the site of cleavage of human MAVS by bat 3ABC proteases. CONCLUSIONS: 3ABC protease cleavage of MAVS is a conserved attribute of hepatoviruses, acting broadly across different mammalian species and associated with evidence of diversifying selection at cleavage sites in rodent and bat MAVS orthologs. The capacity of hepatoviruses to disrupt MAVS-mediated innate immune responses has shaped evolution of both hepatoviruses and their hosts, and facilitates cross-species transmission of hepatitis A. LAY SUMMARY: Hepatitis A virus, a common cause of acute hepatitis globally, is likely to have evolved from a virus that jumped from a rodent species to humans within the last 10-12 thousand years. Here we show that distantly related hepatoviruses, that infect bats and rodents today, express proteases that disrupt innate antiviral responses in human cells. This conserved attribute of hepatoviruses may have contributed to that ancient host species shift.


Subject(s)
Hepatitis A virus , Immunity, Innate/immunology , Viral Nonstructural Proteins/metabolism , Viral Proteases/metabolism , Adaptor Proteins, Signal Transducing/immunology , Evolution, Molecular , HEK293 Cells , Hepatitis A virus/genetics , Hepatitis A virus/immunology , Humans , Signal Transduction/physiology , Virus Replication/physiology
20.
J Virol ; 92(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30232181

ABSTRACT

The quasi-envelopment of hepatitis A virus (HAV) capsids in exosome-like virions (eHAV) is an important but incompletely understood aspect of the hepatovirus life cycle. This process is driven by recruitment of newly assembled capsids to endosomal vesicles into which they bud to form multivesicular bodies with intraluminal vesicles that are later released at the plasma membrane as eHAV. The endosomal sorting complexes required for transport (ESCRT) are key to this process, as is the ESCRT-III-associated protein, ALIX, which also contributes to membrane budding of conventional enveloped viruses. YPX1or3L late domains in the structural proteins of these viruses mediate interactions with ALIX, and two such domains exist in the HAV VP2 capsid protein. Mutational studies of these domains are confounded by the fact that the Tyr residues (important for interactions of YPX1or3L peptides with ALIX) are required for efficient capsid assembly. However, single Leu-to-Ala substitutions within either VP2 YPX3L motif (L1-A and L2-A mutants) were well tolerated, albeit associated with significantly reduced eHAV release. In contrast, simultaneous substitutions in both motifs (L1,2-A) eliminated virus release but did not inhibit assembly of infectious intracellular particles. Immunoprecipitation experiments suggested that the loss of eHAV release was associated with a loss of ALIX recruitment. Collectively, these data indicate that HAV YPX3L motifs function as redundant late domains during quasi-envelopment and viral release. Since these motifs present little solvent-accessible area in the crystal structure of the naked extracellular capsid, the capsid structure may be substantially different during quasi-envelopment.IMPORTANCE Nonlytic release of hepatitis A virus (HAV) as exosome-like quasi-enveloped virions is a unique but incompletely understood aspect of the hepatovirus life cycle. Several lines of evidence indicate that the host protein ALIX is essential for this process. Tandem YPX3L "late domains" in the VP2 capsid protein could be sites of interaction with ALIX, but they are not accessible on the surface of an X-ray model of the extracellular capsid, raising doubts about this putative late domain function. Here, we describe YPX3L domain mutants that assemble capsids normally but fail to bind ALIX and be secreted as quasi-enveloped eHAV. Our data support late domain function for the VP2 YPX3L motifs and raise questions about the structure of the HAV capsid prior to and following quasi-envelopment.


Subject(s)
Amino Acid Motifs , Capsid Proteins/metabolism , Capsid/physiology , Carcinoma, Hepatocellular/metabolism , Hepatitis A virus/physiology , Virion/physiology , Virus Replication , Amino Acid Substitution , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes , Hepatitis A/genetics , Hepatitis A/metabolism , Hepatitis A/virology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/virology , Multivesicular Bodies , Mutation , Protein Conformation , Tumor Cells, Cultured , Virus Release
SELECTION OF CITATIONS
SEARCH DETAIL