Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Rep ; 11(1): 7394, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795808

ABSTRACT

Cassava is a key food security crop in Central Africa, but its production depends largely on the use of local farmers' varieties characterized by inherently low yield which is compounded by generally high susceptibility to various growth and yield-limiting pests and diseases. Improved cassava genotypes have demonstrated the potential to substantially improve cassava's contribution to food security and the development of the cassava industry and the improvement of nutrition status elsewhere in Western Africa. Eleven improved cassava genotypes were compared with a local landrace (LMR) used as a check under field conditions over two years in eight locations, grouped in four agro-ecologies in Cameroon. Pest and disease abundance/incidence and damage severity were evaluated. At harvest, root yield and carotenoid content were measured. Best linear unbiased predictors showed the lowest breeding value for LMR with the cassava mosaic virus disease (+ 66.40 ± 2.42) compared with 1.00 ± 0.02% for the most susceptible improved genotype. Two genotypes (I010040-27 and I011797) stood out for having higher predicted fresh root yield means which were at least 16 times greater compared with LMR. Predicted total carotenoid content was the highest (+ 5.04 ± 0.17) for improved genotype I070593 compared with LMR which showed the lowest (- 3.90 ± 0.06%) and could contribute to the alleviation of vitamin A deficiency from cassava-based food systems. Diffusion of high-yielding and nutritious genotypes could alleviate food and nutritional security in Central Africa.


Subject(s)
Ecology , Genotype , Manihot/genetics , Plant Breeding , Africa, Central , Africa, Western , Agriculture/methods , Biomass , Cameroon , Carotenoids/metabolism , Farmers , Food , Geography , Hydrogen-Ion Concentration , Linear Models , Soil
2.
Molecules ; 12(7): 1290-306, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17909485

ABSTRACT

Secondary plant compounds are important signals in several symbiotic and pathogenic plant-microbe interactions. The present review is limited to two groups of secondary plant compounds, flavonoids and strigolactones, which have been reported in root exudates. Data on flavonoids as signaling compounds are available from several symbiotic and pathogenic plant-microbe interactions, whereas only recently initial data on the role of strigolactones as plant signals in the arbuscular mycorrhizal symbiosis have been reported. Data from other plant-microbe interactions and strigolactones are not available yet. In the present article we are focusing on flavonoids in plant-fungal interactions such as the arbuscular mycorrhizal (AM) association and the signaling between different Fusarium species and plants. Moreover the role of strigolactones in the AM association is discussed and new data on the effect of strigolactones on fungi, apart from arbuscular mycorrhizal fungi (AMF), are provided.


Subject(s)
Flavonoids/metabolism , Fungi/physiology , Fungi/pathogenicity , Lactones/metabolism , Plant Exudates/chemistry , Plant Roots/metabolism , Plant Roots/microbiology , Symbiosis/physiology , Flavonoids/chemistry , Lactones/chemistry
3.
Plant Signal Behav ; 2(1): 58-62, 2007 Jan.
Article in English | MEDLINE | ID: mdl-19516969

ABSTRACT

TWO SORGHUM CULTIVARS: the Striga-tolerant S-35 and the Striga-sensitive CK60-B were grown with or without arbuscular mycorrhizal (AM) fungi, and with or without phosphorus addition. At 24 and 45 days after sowing (DAS) of sorghum, root exudates were collected and tested for effects on germination of preconditioned Striga hermonthica seeds. Root exudates from AM sorghum plants induced lower germination of S. hermonthica seeds than exudates from non-mycorrhizal sorghum. The magnitude of this effect depended on the cultivar and harvest time. A significantly (88-97%) lower germination of S. hermonthica seeds upon exposure to root exudates from AM S-35 plants was observed at both harvest times whereas for AM inoculated CK60-B plants a significantly (41%) lower germination was observed only at 45 DAS. The number of S. hermonthica seedlings attached to and emerged on both sorghum cultivars were also lower in mycorrhizal than in non-mycorrhizal plants. Again, this reduction was more pronounced with S-35 than with CK60-B plants. There was no effect of phosphorus addition on Striga seed germination, attachment or emergence. We hypothesize that the negative effect of mycorrhizal colonization on Striga germination and on subsequent attachment and emergence is mediated through the production of signaling molecules (strigolactones) for AM fungi and parasitic plants.

SELECTION OF CITATIONS
SEARCH DETAIL