Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Methods ; 16(2): 191-198, 2019 02.
Article in English | MEDLINE | ID: mdl-30700902

ABSTRACT

CD8+ T cells recognize and eliminate tumors in an antigen-specific manner. Despite progress in characterizing the antitumor T cell repertoire and function, the identification of target antigens remains a challenge. Here we describe the use of chimeric receptors called signaling and antigen-presenting bifunctional receptors (SABRs) in a cell-based platform for T cell receptor (TCR) antigen discovery. SABRs present an extracellular complex comprising a peptide and major histocompatibility complex (MHC), and induce intracellular signaling via a TCR-like signal after binding with a cognate TCR. We devised a strategy for antigen discovery using SABR libraries to screen thousands of antigenic epitopes. We validated this platform by identifying the targets recognized by public TCRs of known specificities. Moreover, we extended this approach for personalized neoantigen discovery.


Subject(s)
Antigen Presentation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Antigen-Presenting Cells/cytology , Antigens/chemistry , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , CD8-Positive T-Lymphocytes/cytology , Cloning, Molecular , Coculture Techniques , Epitopes/chemistry , False Positive Reactions , Gene Library , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immunotherapy/methods , Jurkat Cells , K562 Cells , Lectins, C-Type/metabolism , Major Histocompatibility Complex , Oligonucleotides/genetics , Peptides/chemistry
2.
Nat Methods ; 16(2): 183-190, 2019 02.
Article in English | MEDLINE | ID: mdl-30700903

ABSTRACT

T cell receptor (TCR) ligand discovery is essential for understanding and manipulating immune responses to tumors. We developed a cell-based selection platform for TCR ligand discovery that exploits a membrane transfer phenomenon called trogocytosis. We discovered that T cell membrane proteins are transferred specifically to target cells that present cognate peptide-major histocompatibility complex (MHC) molecules. Co-incubation of T cells expressing an orphan TCR with target cells collectively presenting a library of peptide-MHCs led to specific labeling of cognate target cells, enabling isolation of these target cells and sequencing of the cognate TCR ligand. We validated this method for two clinically employed TCRs and further used the platform to identify the cognate neoepitope for a subject-derived neoantigen-specific TCR. Thus, target cell trogocytosis is a robust tool for TCR ligand discovery that will be useful for studying basic tumor immunology and identifying new targets for immunotherapy.


Subject(s)
Antigens/chemistry , Genetic Techniques , Receptors, Antigen, T-Cell/chemistry , T-Lymphocytes/cytology , Adaptive Immunity , Animals , Biotinylation , DNA/analysis , Epitopes/chemistry , Gene Library , HEK293 Cells , Humans , Immunotherapy , Jurkat Cells , K562 Cells , Ligands , Mice , Peptides/chemistry , Phagocytosis , T-Lymphocytes/immunology
3.
Plant Cell ; 29(11): 2711-2726, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29084873

ABSTRACT

In land plants, linear tetrapyrrole (bilin)-based phytochrome photosensors optimize photosynthetic light capture by mediating massive reprogramming of gene expression. But, surprisingly, many green algal genomes lack phytochrome genes. Studies of the heme oxygenase mutant (hmox1) of the green alga Chlamydomonas reinhardtii suggest that bilin biosynthesis in plastids is essential for proper regulation of a nuclear gene network implicated in oxygen detoxification during dark-to-light transitions. hmox1 cannot grow photoautotrophically and photoacclimates poorly to increased illumination. We show that these phenotypes are due to reduced accumulation of photosystem I (PSI) reaction centers, the PSI electron acceptors 5'-monohydroxyphylloquinone and phylloquinone, and the loss of PSI and photosystem II antennae complexes during photoacclimation. The hmox1 mutant resembles chlorophyll biosynthesis mutants phenotypically, but can be rescued by exogenous biliverdin IXα, the bilin produced by HMOX1. This rescue is independent of photosynthesis and is strongly dependent on blue light. RNA-seq comparisons of hmox1, genetically complemented hmox1, and chemically rescued hmox1 reveal that tetrapyrrole biosynthesis and known photoreceptor and photosynthesis-related genes are not impacted in the hmox1 mutant at the transcript level. We propose that a bilin-based, blue-light-sensing system within plastids evolved together with a bilin-based retrograde signaling pathway to ensure that a robust photosynthetic apparatus is sustained in light-grown Chlamydomonas.


Subject(s)
Bile Pigments/biosynthesis , Chlamydomonas reinhardtii/metabolism , Heme Oxygenase-1/metabolism , Plant Proteins/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/radiation effects , Chloroplasts/genetics , Chloroplasts/metabolism , Gene Expression Regulation, Plant , Heme Oxygenase-1/genetics , Light , Mutation , Oxygen/metabolism , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Plant Proteins/genetics , Signal Transduction/genetics
4.
Int J Syst Evol Microbiol ; 64(Pt 7): 2461-2466, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24786353

ABSTRACT

The Gram-stain-negative, rod-shaped bacterial isolate BT-1(T) is the closest relative to the genus 'Candidatus Liberibacter' cultured to date. BT-1(T) was recovered from the phloem sap of a defoliating mountain papaya in Puerto Rico. The BT-1(T) 16S rRNA gene sequence showed that strain BT-1(T) is most closely related to members of the genus 'Ca. Liberibacter' sharing 94.7% 16S rRNA gene sequence similarity with 'Ca. Liberibacter americanus' and 'Ca. Liberibacter asiaticus'. Additionally, average nucleotide identity, 16S rRNA gene sequences and conserved protein sequences supported inclusion of the previously described species of the genus 'Ca. Liberibacter' in a genus with BT-1(T). The prominent fatty acids of isolate BT-1(T) were C18 : 1ω7c (77.2%), C16 : 0 OH (4.8%), C18 : 0 (4.4%) and C16 : 0 (3.5%). Both physiological and genomic characteristics support the creation of the genus Liberibacter, as well as the novel species Liberibacter crescens gen. nov., sp. nov. with type strain BT-1(T) ( = ATCC BAA-2481(T) = DSM 26877(T)).


Subject(s)
Carica/microbiology , Phylogeny , Rhizobiaceae/classification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Molecular Sequence Data , Phloem/microbiology , Puerto Rico , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Sequence Analysis, DNA
5.
Elife ; 62017 05 17.
Article in English | MEDLINE | ID: mdl-28513435

ABSTRACT

The pathways controlling cilium biogenesis in different cell types have not been fully elucidated. We recently identified peptidylglycine α-amidating monooxygenase (PAM), an enzyme required for generating amidated bioactive signaling peptides, in Chlamydomonas and mammalian cilia. Here, we show that PAM is required for the normal assembly of motile and primary cilia in Chlamydomonas, planaria and mice. Chlamydomonas PAM knockdown lines failed to assemble cilia beyond the transition zone, had abnormal Golgi architecture and altered levels of cilia assembly components. Decreased PAM gene expression reduced motile ciliary density on the ventral surface of planaria and resulted in the appearance of cytosolic axonemes lacking a ciliary membrane. The architecture of primary cilia on neuroepithelial cells in Pam-/- mouse embryos was also aberrant. Our data suggest that PAM activity and alterations in post-Golgi trafficking contribute to the observed ciliogenesis defects and provide an unanticipated, highly conserved link between PAM, amidation and ciliary assembly.


Subject(s)
Chlamydomonas/enzymology , Cilia/metabolism , Mixed Function Oxygenases/metabolism , Multienzyme Complexes/metabolism , Organelle Biogenesis , Animals , Gene Knockdown Techniques , Mice/embryology , Mice, Knockout , Mixed Function Oxygenases/genetics , Multienzyme Complexes/genetics , Planarians/enzymology
6.
Virology ; 468-470: 462-471, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25248160

ABSTRACT

Superinfection exclusion (SIE), a phenomenon in which a preexisting viral infection prevents a secondary infection with the same or closely related virus, has been described for different viruses, including important pathogens of humans, animals, and plants. Several mechanisms acting at various stages of the viral life cycle have been proposed to explain SIE. Most cases of SIE in plant virus systems were attributed to induction of RNA silencing, a host defense mechanism that is mediated by small RNAs. Here we show that SIE by Citrus tristeza virus (CTV) does not correlate with the production of viral small interfering RNAs (siRNAs). CTV variants, which differed in the SIE ability, had similar siRNAs profiles. Along with our previous observations that the exclusion phenomenon requires a specific viral protein, p33, the new data suggest that SIE by CTV is highly complex and appears to use different mechanisms than those proposed for other viruses.


Subject(s)
Citrus/virology , Gene Expression Regulation, Viral/physiology , Plant Diseases/virology , Plant Viruses/physiology , RNA, Viral/classification , RNA, Viral/metabolism , Coinfection , Plant Viruses/genetics , RNA, Viral/genetics
7.
Genome Announc ; 2(3)2014 May 08.
Article in English | MEDLINE | ID: mdl-24812223

ABSTRACT

We report here the complete genome sequences of Lactobacillus johnsonii strain N6.2, a homofermentative lactic acid intestinal bacterium, and Lactobacillus reuteri strain TD1, a heterofermentative lactic acid intestinal bacterium, both isolated from a type 1 diabetes-resistant rat model.

8.
PLoS One ; 9(1): e84469, 2014.
Article in English | MEDLINE | ID: mdl-24416233

ABSTRACT

The full genomes of two uncultured plant pathogenic Liberibacter, Ca. Liberibacter asiaticus and Ca. Liberibacter solanacearum, are publicly available. Recently, the larger genome of a closely related cultured strain, Liberibacter crescens BT-1, was described. To gain insights into our current inability to culture most Liberibacter, a comparative genomics analysis was done based on the RAST, KEGG, and manual annotations of these three organisms. In addition, pathogenicity genes were examined in all three bacteria. Key deficiencies were identified in Ca. L. asiaticus and Ca. L. solanacearum that might suggest why these organisms have not yet been cultured. Over 100 genes involved in amino acid and vitamin synthesis were annotated exclusively in L. crescens BT-1. However, none of these deficiencies are limiting in the rich media used to date. Other genes exclusive to L. crescens BT-1 include those involved in cell division, the stringent response regulatory pathway, and multiple two component regulatory systems. These results indicate that L. crescens is capable of growth under a much wider range of conditions than the uncultured Liberibacter strains. No outstanding differences were noted in pathogenicity-associated systems, suggesting that L. crescens BT-1 may be a plant pathogen on an as yet unidentified host.


Subject(s)
Genes, Bacterial/genetics , Genomics , Rhizobiaceae/growth & development , Rhizobiaceae/genetics , Carbon/metabolism , Cell Membrane/metabolism , Culture Techniques , Electron Transport/genetics , Genes, Essential , Homeostasis/genetics , Rhizobiaceae/cytology , Rhizobiaceae/metabolism , Species Specificity
9.
Front Microbiol ; 5: 361, 2014.
Article in English | MEDLINE | ID: mdl-25101067

ABSTRACT

Despite the large interest in the human microbiome in recent years, there are no reports of bacterial DNA methylation in the microbiome. Here metagenomic sequencing using the Pacific Biosciences platform allowed for rapid identification of bacterial GATC methylation status of a bacterial species in human stool samples. For this work, two stool samples were chosen that were dominated by a single species, Bacteroides dorei. Based on 16S rRNA analysis, this species represented over 45% of the bacteria present in these two samples. The B. dorei genome sequence from these samples was determined and the GATC methylation sites mapped. The Bacteroides dorei genome from one subject lacked any GATC methylation and lacked the DNA adenine methyltransferase genes. In contrast, B. dorei from another subject contained 20,551 methylated GATC sites. Of the 4970 open reading frames identified in the GATC methylated B. dorei genome, 3184 genes were methylated as well as 1735 GATC methylations in intergenic regions. These results suggest that DNA methylation patterns are important to consider in multi-omic analyses of microbiome samples seeking to discover the diversity of bacterial functions and may differ between disease states.

10.
PLoS One ; 9(7): e101648, 2014.
Article in English | MEDLINE | ID: mdl-24999826

ABSTRACT

The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.


Subject(s)
Ammonia/metabolism , Archaea/genetics , Archaea/metabolism , Genomics , Soil Microbiology , Adaptation, Physiological/genetics , Archaea/cytology , Archaea/physiology , Biological Transport/genetics , Carbon/metabolism , Carbon Cycle/genetics , Cell Division/genetics , Chemotaxis/genetics , DNA Repair/genetics , DNA Replication/genetics , Energy Metabolism/genetics , Metals, Heavy/toxicity , Molecular Sequence Annotation , Nitrogen/metabolism , Oceans and Seas , Osmotic Pressure , Oxidation-Reduction , Phylogeny , Terpenes/metabolism
11.
Front Microbiol ; 5: 678, 2014.
Article in English | MEDLINE | ID: mdl-25540641

ABSTRACT

The incidence of the autoimmune disease, type 1 diabetes (T1D), has increased dramatically over the last half century in many developed countries and is particularly high in Finland and other Nordic countries. Along with genetic predisposition, environmental factors are thought to play a critical role in this increase. As with other autoimmune diseases, the gut microbiome is thought to play a potential role in controlling progression to T1D in children with high genetic risk, but we know little about how the gut microbiome develops in children with high genetic risk for T1D. In this study, the early development of the gut microbiomes of 76 children at high genetic risk for T1D was determined using high-throughput 16S rRNA gene sequencing. Stool samples from children born in the same hospital in Turku, Finland were collected at monthly intervals beginning at 4-6 months after birth until 2.2 years of age. Of those 76 children, 29 seroconverted to T1D-related autoimmunity (cases) including 22 who later developed T1D, the remaining 47 subjects remained healthy (controls). While several significant compositional differences in low abundant species prior to seroconversion were found, one highly abundant group composed of two closely related species, Bacteroides dorei and Bacteroides vulgatus, was significantly higher in cases compared to controls prior to seroconversion. Metagenomic sequencing of samples high in the abundance of the B. dorei/vulgatus group before seroconversion, as well as longer 16S rRNA sequencing identified this group as Bacteroides dorei. The abundance of B. dorei peaked at 7.6 months in cases, over 8 months prior to the appearance of the first islet autoantibody, suggesting that early changes in the microbiome may be useful for predicting T1D autoimmunity in genetically susceptible infants. The cause of increased B. dorei abundance in cases is not known but its timing appears to coincide with the introduction of solid food.

12.
Genome Announc ; 1(6)2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24285647

ABSTRACT

We report the complete genome sequence of Carnobacterium gilichinskyi strain WN1359, previously isolated from Siberian permafrost and capable of growth under cold (0°C), anoxic, CO2-dominated, low-pressure (0.7-kPa) conditions in a simulation of the Mars atmosphere.

13.
Genome Announc ; 1(4)2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23950115

ABSTRACT

We report the complete genome sequence of Serratia liquefaciens strain ATCC 27592, which was previously identified as capable of growth under low-pressure conditions. To the best of our knowledge, this is the first announcement of the complete genome sequence of an S. liquefaciens strain.

14.
Exp Gerontol ; 48(10): 1107-19, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23337777

ABSTRACT

We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions.


Subject(s)
Autophagy/physiology , Caloric Restriction , Leucine/physiology , Oxygen Consumption/physiology , Saccharomyces cerevisiae/physiology , Blotting, Western , Cell Division/physiology , Culture Media , DNA Damage/physiology , Galactose/metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Oxidative Stress/physiology , Saccharomyces cerevisiae/growth & development , Time Factors , Up-Regulation
15.
Stand Genomic Sci ; 7(2): 271-83, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-23408754

ABSTRACT

Liberibacter crescens BT-1, a Gram-negative, rod-shaped bacterial isolate, was previously recovered from mountain papaya to gain insight on Huanglongbing (HLB) and Zebra Chip (ZC) diseases. The genome of BT-1 was sequenced at the Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida. A finished assembly and annotation yielded one chromosome with a length of 1,504,659 bp and a G+C content of 35.4%. Comparison to other species in the Liberibacter genus, L. crescens has many more genes in thiamine and essential amino acid biosynthesis. This likely explains why L. crescens BT-1 is culturable while the known Liberibacter strains have not yet been cultured. Similar to CandidatusL. asiaticus psy62, the L. crescens BT-1 genome contains two prophage regions.

SELECTION OF CITATIONS
SEARCH DETAIL