Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Publication year range
1.
Cell ; 171(3): 724-724.e1, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053972

ABSTRACT

Angiopoietins signal through TIE receptors to control both developmental and homeostatic processes that can go awry in genetic diseases and cancer. This SnapShot illustrates key elements of angiopoietin signaling in normal and disease contexts.


Subject(s)
Angiopoietins/metabolism , Neovascularization, Pathologic/pathology , Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Lymphangiogenesis , Neovascularization, Pathologic/metabolism
2.
Gastroenterology ; 160(1): 245-259, 2021 01.
Article in English | MEDLINE | ID: mdl-32941878

ABSTRACT

BACKGROUND & AIMS: Mutations in the APC gene and other genes in the Wnt signaling pathway contribute to development of colorectal carcinomas. R-spondins (RSPOs) are secreted proteins that amplify Wnt signaling in intestinal stem cells. Alterations in RSPO genes have been identified in human colorectal tumors. We studied the effects of RSPO1 overexpression in ApcMin/+ mutant mice. METHODS: An adeno associated viral vector encoding RSPO1-Fc fusion protein, or control vector, was injected into ApcMin/+mice. Their intestinal crypts were isolated and cultured as organoids. which were incubated with or without RSPO1-Fc and an inhibitor of transforming growth factor beta receptor (TGFBR). Livers were collected from mice and analyzed by immunohistochemistry. Organoids and adenomas were analyzed by quantitative reverse-transcription PCR, single cell RNA sequencing, and immunohistochemistry. RESULTS: Intestines from Apc+/+ mice injected with the vector encoding RSPO1-Fc had significantly deeper crypts, longer villi, with increased EdU labeling, indicating increased proliferation of epithelial cells, in comparison to mice given control vector. AAV-RSPO1-Fc-transduced ApcMin/+ mice also developed fewer and smaller intestinal tumors and had significantly longer survival times. Adenomas of ApcMin/+ mice injected with the RSPO1-Fc vector showed a rapid increase in apoptosis and in the expression of Wnt target genes, followed by reduced expression of messenger RNAs and proteins regulated by the Wnt pathway, reduced cell proliferation, and less crypt branching than adenomas of mice given the control vector. Addition of RSPO1 reduced the number of adenoma organoids derived from ApcMin/+ mice and suppressed expression of Wnt target genes but increased phosphorylation of SMAD2 and transcription of genes regulated by SMAD. Inhibition of TGFBR signaling in organoids stimulated with RSPO1-Fc restored organoid formation and expression of genes regulated by Wnt. The TGFBR inhibitor restored apoptosis in adenomas from ApcMin/+ mice expressing RSPO1-Fc back to the same level as in the adenomas from mice given the control vector. CONCLUSIONS: Expression of RSPO1 in ApcMin/+ mice increases apoptosis and reduces proliferation and Wnt signaling in adenoma cells, resulting in development of fewer and smaller intestinal tumors and longer mouse survival. Addition of RSPO1 to organoids derived from adenomas inhibits their growth and promotes proliferation of intestinal stem cells that retain the APC protein; these effects are reversed by TGFB inhibitor. Strategies to increase the expression of RSPO1 might be developed for the treatment of intestinal adenomas.


Subject(s)
Adenoma/pathology , Intestinal Neoplasms/pathology , Thrombospondins/metabolism , Transforming Growth Factor beta/physiology , Wnt Signaling Pathway/physiology , Adenoma/etiology , Animals , Disease Models, Animal , Intestinal Neoplasms/etiology , Mice , Organoids
3.
Blood ; 136(16): 1871-1883, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32842144

ABSTRACT

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) stem cell niche, which provides a vital source of HSC regulatory signals. Radiation and chemotherapy disrupt the HSC niche, including its sinusoidal vessels and perivascular cells, contributing to delayed hematopoietic recovery. Thus, identification of factors that can protect the HSC niche during an injury could offer a significant therapeutic opportunity to improve hematopoietic regeneration. In this study, we identified a critical function for vascular endothelial growth factor-C (VEGF-C), that of maintaining the integrity of the BM perivascular niche and improving BM niche recovery after irradiation-induced injury. Both global and conditional deletion of Vegfc in endothelial or leptin receptor-positive (LepR+) cells led to a disruption of the BM perivascular niche. Furthermore, deletion of Vegfc from the microenvironment delayed hematopoietic recovery after transplantation by decreasing endothelial proliferation and LepR+ cell regeneration. Exogenous administration of VEGF-C via an adenoassociated viral vector improved hematopoietic recovery after irradiation by accelerating endothelial and LepR+ cell regeneration and by increasing the expression of hematopoietic regenerative factors. Our results suggest that preservation of the integrity of the perivascular niche via VEGF-C signaling could be exploited therapeutically to enhance hematopoietic regeneration.


Subject(s)
Bone Marrow Cells/metabolism , Bone Marrow/metabolism , Endothelial Cells/metabolism , Stem Cell Niche , Vascular Endothelial Growth Factor C/genetics , Animals , Biomarkers , Bone Marrow Cells/cytology , Bone Marrow Cells/radiation effects , Gene Expression , Hematopoiesis/genetics , Hematopoiesis/radiation effects , Immunophenotyping , Mice , Mice, Transgenic , Models, Biological , Protein Binding , RNA, Messenger , Receptors, Leptin/metabolism , Stem Cell Niche/genetics , Stem Cell Niche/radiation effects , Vascular Endothelial Growth Factor C/metabolism
4.
Physiol Rev ; 94(3): 779-94, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24987005

ABSTRACT

Vascular endothelial growth factor-B (VEGF-B), discovered over 15 years ago, has long been seen as one of the more ambiguous members of the VEGF family. VEGF-B is produced as two isoforms: one that binds strongly to heparan sulfate in the pericellular matrix and a soluble form that can acquire binding via proteolytic processing. Both forms of VEGF-B bind to VEGF-receptor 1 (VEGFR-1) and the neuropilin-1 (NRP-1) coreceptor, which are expressed mainly in blood vascular endothelial cells. VEGF-B-deficient mice and rats are viable without any overt phenotype, and the ability of VEGF-B to induce angiogenesis in most tissues is weak. This has been a puzzle, as the related placenta growth factor (PlGF) binds to the same receptors and induces angiogenesis and arteriogenesis in a variety of tissues. However, it seems that VEGF-B is a vascular growth factor that is more tissue specific and can have trophic and metabolic effects, and its binding to VEGFR-1 shows subtle but important differences compared with that of PlGF. VEGF-B has the potential to induce coronary vessel growth and cardiac hypertrophy, which can protect the heart from ischemic damage as well as heart failure. In addition, VEGF-B is abundantly expressed in tissues with highly active energy metabolism, where it could support significant metabolic functions. VEGF-B also has a role in neuroprotection, but unlike other members of the VEGF family, it does not have a clear role in tumor progression. Here we review what is hitherto known about the functions of this growth factor in physiology and disease.


Subject(s)
Vascular Endothelial Growth Factor B/physiology , Animals , Disease , Humans , Molecular Structure , Vascular Endothelial Growth Factor B/chemistry
5.
Development ; 145(14)2018 07 20.
Article in English | MEDLINE | ID: mdl-30030240

ABSTRACT

Vascular endothelial growth factors (VEGFs) are best known for their involvement in orchestrating the development and maintenance of the blood and lymphatic vascular systems. VEGFs are secreted by a variety of cells and they bind to their cognate tyrosine kinase VEGF receptors (VEGFRs) in endothelial cells to elicit various downstream effects. In recent years, there has been tremendous progress in elucidating different VEGF/VEGFR signaling functions in both the blood and lymphatic vascular systems. Here, and in the accompanying poster, we present key elements of the VEGF/VEGFR pathway and highlight the classical and newly discovered functions of VEGF signaling in blood and lymphatic vessel development and pathology.


Subject(s)
Blood Vessels/metabolism , Lymphatic Vessels/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Blood Vessels/cytology , Humans , Lymphatic Vessels/cytology , Receptors, Vascular Endothelial Growth Factor/genetics , Vascular Endothelial Growth Factor A/genetics
6.
Proc Natl Acad Sci U S A ; 114(17): 4376-4381, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28396439

ABSTRACT

The endothelial cell (EC)-specific receptor tyrosine kinases Tie1 and Tie2 are necessary for the remodeling and maturation of blood and lymphatic vessels. Angiopoietin-1 (Ang1) growth factor is a Tie2 agonist, whereas Ang2 functions as a context-dependent agonist/antagonist. The orphan receptor Tie1 modulates Tie2 activation, which is induced by association of angiopoietins with Tie2 in cis and across EC-EC junctions in trans Except for the binding of the C-terminal angiopoietin domains to the Tie2 ligand-binding domain, the mechanisms for Tie2 activation are poorly understood. We report here the structural basis of Ang1-induced Tie2 dimerization in cis and provide mechanistic insights on Ang2 antagonism, Tie1/Tie2 heterodimerization, and Tie2 clustering. We find that Ang1-induced Tie2 dimerization and activation occurs via the formation of an intermolecular ß-sheet between the membrane-proximal (third) Fibronectin type III domains (Fn3) of Tie2. The structures of Tie2 and Tie1 Fn3 domains are similar and compatible with Tie2/Tie1 heterodimerization by the same mechanism. Mutagenesis of the key interaction residues of Tie2 and Tie1 Fn3 domains decreased Ang1-induced Tie2 phosphorylation and increased the basal phosphorylation of Tie1, respectively. Furthermore, the Tie2 structures revealed additional interactions between the Fn 2 (Fn2) domains that coincide with a mutation of Tie2 in primary congenital glaucoma that leads to defective Tie2 clustering and junctional localization. Mutagenesis of the Fn2-Fn2 interface increased the basal phosphorylation of Tie2, suggesting that the Fn2 interactions are essential in preformed Tie2 oligomerization. The interactions of the membrane-proximal domains could provide new targets for modulation of Tie receptor activity.

7.
BMC Cancer ; 19(1): 732, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31340773

ABSTRACT

BACKGROUND: Angiopoietin growth factors (Angs) regulate angiogenesis and lymphangiogenesis by binding to the endothelial Tie2 receptor. Ang2 expression is elevated in tissue hypoxia and inflammation, which also induce cleavage of the extracellular domain of the orphan Tie1 receptor. Here we have examined if the concentrations of Ang2 and the soluble extracellular domain of Tie1 in patient plasma are associated with the prognosis of patients with metastatic breast cancer. METHODS: Plasma Tie1 and Ang2 levels were measured in metastatic breast cancer patients treated in a phase II trial with a taxane-bevacizumab combination chemotherapy in the first-line treatment setting. They were analyzed before treatment, after 6 weeks and 6 months of treatment, and at the final study visit. Using the median concentrations as cutoffs, Tie1 and Ang2 data were dichotomized into low and high concentration groups. Additionally, we analyzed Tie1 concentrations in plasma from 10 healthy women participating in a breast cancer primary prevention study. RESULTS: Plasma samples were available from 58 (89%) of the 65 patients treated in the trial. The baseline Tie1 levels of the healthy controls were significantly lower than those of the metastatic patients (p < 0.001). The overall survival of the patients with a high baseline Tie1 level was significantly shorter (multivariate HR 3.07, 95% CI 1.39-6.79, p = 0.005). Additionally, the progression-free survival was shorter for patients with a high baseline Tie1 level (multivariate HR 3.78, 95% CI 1.57-9.09, p = 0.003). In contrast, the baseline Ang2 levels had no prognostic impact in a multivariate Cox proportional hazard regression analysis. The combined analysis of baseline Tie1 and Ang2 levels revealed that patients with both high Tie1 and high Ang2 baseline levels had a significantly shorter overall survival than the patients with low baseline levels of both markers (multivariate HR for overall survival 4.32, 95% CI 1.44-12.94, p = 0.009). CONCLUSIONS: This is the first study to demonstrate the prognostic value of baseline Tie1 plasma concentration in patients with metastatic breast cancer. Combined with the results of the Ang2 analyses, the patients with both high Tie1 and Ang2 levels before treatment had the poorest survival. TRIAL REGISTRATION: Clinicaltrials.gov: NCT00979641, registration date 19-DEC-2008. The regional Ethics Committee: R08142M, registration date 18-NOV-2008.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Biomarkers, Tumor/blood , Breast Neoplasms/drug therapy , Receptor, TIE-1/metabolism , Adult , Aged , Angiopoietin-2/blood , Bevacizumab/administration & dosage , Breast/pathology , Breast Neoplasms/blood , Breast Neoplasms/mortality , Docetaxel/administration & dosage , Drug Administration Schedule , Female , Humans , Middle Aged , Prognosis , Progression-Free Survival , Prospective Studies , Survival Analysis
8.
Circ Res ; 116(10): 1660-9, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25814692

ABSTRACT

RATIONALE: Collagen- and calcium-binding EGF domain-containing protein 1 (CCBE1) is essential for lymphangiogenesis in vertebrates and has been associated with Hennekam syndrome. Recently, CCBE1 has emerged as a crucial regulator of vascular endothelial growth factor-C (VEGFC) signaling. OBJECTIVE: CCBE1 is a secreted protein characterized by 2 EGF domains and 2 collagen repeats. The functional role of the different CCBE1 protein domains is completely unknown. Here, we analyzed the functional role of the different CCBE1 domains in vivo and in vitro. METHODS AND RESULTS: We analyzed the functionality of several CCBE1 deletion mutants by generating knock-in mice expressing these mutants, by analyzing their ability to enhance Vegfc signaling in vivo in zebrafish, and by testing their ability to induce VEGFC processing in vitro. We found that deleting the collagen domains of CCBE1 has a much stronger effect on CCBE1 activity than deleting the EGF domains. First, although CCBE1ΔCollagen mice fully phenocopy CCBE1 knock-out mice, CCBE1ΔEGF knock-in embryos still form rudimentary lymphatics. Second, Ccbe1ΔEGF, but not Ccbe1ΔCollagen, could partially substitute for Ccbe1 to enhance Vegfc signaling in zebrafish. Third, CCBE1ΔEGF, similarly to CCBE1, but not CCBE1ΔCollagen could activate VEGFC processing in vitro. Furthermore, a Hennekam syndrome mutation within the collagen domain has a stronger effect than a Hennekam syndrome mutation within the EGF domain. CONCLUSIONS: We propose that the collagen domains of CCBE1 are crucial for the activation of VEGFC in vitro and in vivo. The EGF domains of CCBE1 are dispensable for regulation of VEGFC processing in vitro, however, they are necessary for full lymphangiogenic activity of CCBE1 in vivo.


Subject(s)
Calcium-Binding Proteins/metabolism , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Tumor Suppressor Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Binding Sites , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/genetics , Collagen/metabolism , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/metabolism , Epidermal Growth Factor/metabolism , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , Genital Diseases, Male/genetics , Genital Diseases, Male/metabolism , Genotype , Gestational Age , HEK293 Cells , Humans , Lymphangiectasis, Intestinal/genetics , Lymphangiectasis, Intestinal/metabolism , Lymphatic Vessels/embryology , Lymphedema/genetics , Lymphedema/metabolism , Mice , Mice, Transgenic , Mutation , Phenotype , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Transfection , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Vascular Endothelial Growth Factor C/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
9.
Proc Natl Acad Sci U S A ; 110(32): 12960-5, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878260

ABSTRACT

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key drivers of blood and lymph vessel formation in development, but also in several pathological processes. VEGF-C signaling through VEGFR-3 promotes lymphangiogenesis, which is a clinically relevant target for treating lymphatic insufficiency and for blocking tumor angiogenesis and metastasis. The extracellular domain of VEGFRs consists of seven Ig homology domains; domains 1-3 (D1-3) are responsible for ligand binding, and the membrane-proximal domains 4-7 (D4-7) are involved in structural rearrangements essential for receptor dimerization and activation. Here we analyzed the crystal structures of VEGF-C in complex with VEGFR-3 domains D1-2 and of the VEGFR-3 D4-5 homodimer. The structures revealed a conserved ligand-binding interface in D2 and a unique mechanism for VEGFR dimerization and activation, with homotypic interactions in D5. Mutation of the conserved residues mediating the D5 interaction (Thr446 and Lys516) and the D7 interaction (Arg737) compromised VEGF-C induced VEGFR-3 activation. A thermodynamic analysis of VEGFR-3 deletion mutants showed that D3, D4-5, and D6-7 all contribute to ligand binding. A structural model of the VEGF-C/VEGFR-3 D1-7 complex derived from small-angle X-ray scattering data is consistent with the homotypic interactions in D5 and D7. Taken together, our data show that ligand-dependent homotypic interactions in D5 and D7 are essential for VEGFR activation, opening promising possibilities for the design of VEGFR-specific drugs.


Subject(s)
Protein Multimerization , Protein Structure, Tertiary , Vascular Endothelial Growth Factor C/chemistry , Vascular Endothelial Growth Factor Receptor-3/chemistry , Amino Acid Sequence , Binding Sites/genetics , Binding, Competitive , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Humans , Ligands , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Mutation , Protein Binding , Scattering, Small Angle , Sequence Homology, Amino Acid , Thermodynamics , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , X-Ray Diffraction
10.
Circulation ; 129(19): 1962-71, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24552833

ABSTRACT

BACKGROUND: Hennekam lymphangiectasia-lymphedema syndrome (Online Mendelian Inheritance in Man 235510) is a rare autosomal recessive disease, which is associated with mutations in the CCBE1 gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for collagen- and calcium-binding epidermal growth factor domains 1 (CCBE1) interactions with the vascular endothelial growth factor-C (VEGF-C) growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. METHODS AND RESULTS: By analyzing VEGF-C produced by CCBE1-transfected cells, we found that, whereas CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector-mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by adeno-associated viral vector-VEGF-C. CONCLUSIONS: These results identify A disintegrin and metalloprotease with thrombospondin motifs-3 as a VEGF-C-activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest that CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis.


Subject(s)
ADAM Proteins/metabolism , Calcium-Binding Proteins/metabolism , Lymphangiogenesis/physiology , Procollagen N-Endopeptidase/metabolism , Tumor Suppressor Proteins/metabolism , Vascular Endothelial Growth Factor C/metabolism , ADAMTS Proteins , Adenoviridae/genetics , Animals , Calcium-Binding Proteins/genetics , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred Strains , Models, Animal , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Neovascularization, Physiologic/physiology , Transfection , Tumor Suppressor Proteins/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
11.
Blood ; 122(5): 658-65, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23803710

ABSTRACT

Vascular bypass procedures in the central nervous system (CNS) remain technically challenging, hindered by complications and often failing to prevent adverse outcome such as stroke. Thus, there is an unmet clinical need for a safe and effective CNS revascularization. Vascular endothelial growth factors (VEGFs) are promising candidates for revascularization; however, their effects appear to be tissue-specific and their potential in the CNS has not been fully explored. To test growth factors for angiogenesis in the CNS, we characterized the effects of endothelium-specific growth factors on the brain vasculature and parenchyma. Recombinant adeno-associated virus (AAV) vectors encoding the growth factors were injected transcranially to the frontoparietal cerebrum of mice. Angiogenesis, mural cell investment, leukocyte recruitment, vascular permeability, reactive gliosis and neuronal patterning were evaluated by 3-dimensional immunofluorescence, electron microscopy, optical projection tomography, and magnetic resonance imaging. Placenta growth factor (PlGF) stimulated robust angiogenesis and arteriogenesis without significant side effects, whereas VEGF and VEGF-C incited growth of aberrant vessels, severe edema, and inflammation. VEGF-B, angiopoietin-1, angiopoietin-2, and a VEGF/angiopoietin-1 chimera had minimal effects on the brain vessels or parenchyma. Of the growth factors tested, PlGF emerged as the most efficient and safe angiogenic factor, hence making it a candidate for therapeutic CNS revascularization.


Subject(s)
Central Nervous System/blood supply , Cerebral Revascularization , Intercellular Signaling Peptides and Proteins/physiology , Pregnancy Proteins/physiology , Animals , Blood Vessels/growth & development , Blood Vessels/metabolism , Central Nervous System Neoplasms/etiology , Central Nervous System Neoplasms/genetics , Encephalitis/etiology , Encephalitis/genetics , Female , Genetic Therapy/methods , Hemangioma/etiology , Hemangioma/genetics , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/genetics , Placenta Growth Factor , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Pregnancy Proteins/therapeutic use , Vascular Endothelial Growth Factor A/adverse effects , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor C/adverse effects , Vascular Endothelial Growth Factor C/genetics
12.
Circulation ; 127(4): 424-34, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23357661

ABSTRACT

BACKGROUND: There is an unmet need for proangiogenic therapeutic molecules for the treatment of tissue ischemia in cardiovascular diseases. However, major inducers of angiogenesis such as vascular endothelial growth factor (VEGF/VEGF-A) have side effects that limit their therapeutic utility in vivo, especially at high concentrations. Angiopoietin-1 has been considered to be a blood vessel stabilization factor that can inhibit the intrinsic property of VEGF to promote vessel leakiness. In this study, we have designed and tested the angiogenic properties of chimeric molecules consisting of receptor-binding parts of VEGF and angiopoietin-1. We aimed at combining the activities of both factors into 1 molecule for easy delivery and expression in target tissues. METHODS AND RESULTS: The VEGF-angiopoietin-1 (VA1) chimeric protein bound to both VEGF receptor-2 and Tie2 and induced the activation of both receptors. Detailed analysis of VA1 versus VEGF revealed differences in the kinetics of VEGF receptor-2 activation and endocytosis, downstream kinase activation, and VE-cadherin internalization. The delivery of a VA1 transgene into mouse skeletal muscle led to increased blood flow and enhanced angiogenesis. VA1 was also very efficient in rescuing ischemic limb perfusion. However, VA1 induced less plasma protein leakage and myeloid inflammatory cell recruitment than VEGF. Furthermore, angioma-like structures associated with VEGF expression were not observed with VA1. CONCLUSIONS: The VEGF-angiopoietin-1 chimera is a potent angiogenic factor that triggers a novel mode of VEGF receptor-2 activation, promoting less vessel leakiness, less tissue inflammation, and better perfusion in ischemic muscle than VEGF. These properties of VA1 make it an attractive therapeutic tool.


Subject(s)
Angiopoietin-1/pharmacology , Genetic Therapy/methods , Ischemia/drug therapy , Neovascularization, Physiologic/physiology , Recombinant Fusion Proteins/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Adenoviridae/genetics , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Animals , Capillary Permeability/physiology , Cell Line, Tumor , Disease Models, Animal , Female , HEK293 Cells , Hindlimb/blood supply , Human Umbilical Vein Endothelial Cells , Humans , Ischemia/genetics , Leukemia, Myeloid , Mice , Mice, Inbred Strains , Muscle, Skeletal/blood supply , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, TIE-2 , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
13.
Blood ; 119(7): 1781-8, 2012 Feb 16.
Article in English | MEDLINE | ID: mdl-22207738

ABSTRACT

VEGFs activate 3 receptor tyrosine kinases, VEGFR-1, VEGFR-2, and VEGFR-3, promoting angiogenic and lymphangiogenic signaling. The extracellular receptor domain (ECD) consists of 7 Ig-homology domains; domains 2 and 3 (D23) represent the ligand-binding domain, whereas the function of D4-7 is unclear. Ligand binding promotes receptor dimerization and instigates transmembrane signaling and receptor kinase activation. In the present study, isothermal titration calorimetry showed that the Gibbs free energy of VEGF-A, VEGF-C, or VEGF-E binding to D23 or the full-length ECD of VEGFR-2 is dominated by favorable entropic contribution with enthalpic penalty. The free energy of VEGF binding to the ECD is 1.0-1.7 kcal/mol less favorable than for binding to D23. A model of the VEGF-E/VEGFR-2 ECD complex derived from small-angle scattering data provided evidence for homotypic interactions in D4-7. We also solved the crystal structures of complexes between VEGF-A or VEGF-E with D23, which revealed comparable binding surfaces and similar interactions between the ligands and the receptor, but showed variation in D23 twist angles. The energetically unfavorable homotypic interactions in D4-7 may be required for re-orientation of receptor monomers, and this mechanism might prevent ligand-independent activation of VEGFR-2 to evade the deleterious consequences for blood and lymph vessel homeostasis arising from inappropriate receptor activation.


Subject(s)
Protein Multimerization/physiology , Thermodynamics , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism , Allosteric Regulation , Animals , Cells, Cultured , Humans , Ligands , Models, Molecular , Pichia , Protein Binding , Protein Structure, Quaternary , Spodoptera , Vascular Endothelial Growth Factor Receptor-1/chemistry , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-3/chemistry , Vascular Endothelial Growth Factor Receptor-3/metabolism
14.
J Clin Invest ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38820174

ABSTRACT

Primary lymphedema (PL), characterized by tissue swelling, fat accumulation and fibrosis, results from defective lymphatic vessels or valves caused by mutations in genes involved in development, maturation and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodelling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR-Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2-TIE1 pathway in lymphatic function.

15.
Blood ; 117(5): 1507-15, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21148085

ABSTRACT

Vascular endothelial growth factors (VEGFs) and their tyrosine kinase receptors (VEGFR-1-3) are central mediators of angiogenesis and lymphangiogenesis. VEGFR-3 ligands VEGF-C and VEGF-D are produced as precursor proteins with long N- and C-terminal propeptides and show enhanced VEGFR-2 and VEGFR-3 binding on proteolytic removal of the propeptides. Two different proteolytic cleavage sites have been reported in the VEGF-D N-terminus. We report here the crystal structure of the human VEGF-D Cys117Ala mutant at 2.9 Å resolution. Comparison of the VEGF-D and VEGF-C structures shows similar extended N-terminal helices, conserved overall folds, and VEGFR-2 interacting residues. Consistent with this, the affinity and the thermodynamic parameters for VEGFR-2 binding are very similar. In comparison with VEGF-C structures, however, the VEGF-D N-terminal helix was extended by 2 more turns because of a better resolution. Both receptor binding and functional assays of N-terminally truncated VEGF-D polypeptides indicated that the residues between the reported proteolytic cleavage sites are important for VEGF-D binding and activation of VEGFR-3, but not of VEGFR-2. Thus, we define here a VEGFR-2-specific form of VEGF-D that is angiogenic but not lymphangiogenic. These results provide important new insights into VEGF-D structure and function.


Subject(s)
Muscle, Skeletal/metabolism , Vascular Endothelial Growth Factor D/chemistry , Vascular Endothelial Growth Factor D/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Amino Acid Sequence , Animals , Cell Proliferation , Cells, Cultured , Crystallography, X-Ray , Humans , Hydrogen Bonding , Immunoenzyme Techniques , Immunoprecipitation , Mice , Models, Molecular , Molecular Sequence Data , Muscle, Skeletal/cytology , Mutagenesis, Site-Directed , Mutation/genetics , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Vascular Endothelial Growth Factor C/chemistry , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor D/genetics
16.
Nature ; 448(7149): 73-7, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17611540

ABSTRACT

In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson's disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson's disease.


Subject(s)
Nerve Growth Factors/physiology , Neurons/physiology , Amino Acid Sequence , Animals , Brain/embryology , Brain/metabolism , Cloning, Molecular , Conserved Sequence , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Humans , In Situ Hybridization , Male , Mice , Molecular Sequence Data , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/therapeutic use , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neurons/metabolism , Neuroprotective Agents/therapeutic use , Oxidopamine , Parkinson Disease/drug therapy , Protein Processing, Post-Translational , RNA, Messenger , Rats , Rats, Wistar , Substantia Nigra/metabolism
17.
Proc Natl Acad Sci U S A ; 107(6): 2425-30, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20145116

ABSTRACT

Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel formation through activation of three receptor tyrosine kinases, VEGFR-1, -2, and -3. The extracellular domain of VEGF receptors consists of seven immunoglobulin homology domains, which, upon ligand binding, promote receptor dimerization. Dimerization initiates transmembrane signaling, which activates the intracellular tyrosine kinase domain of the receptor. VEGF-C stimulates lymphangiogenesis and contributes to pathological angiogenesis via VEGFR-3. However, proteolytically processed VEGF-C also stimulates VEGFR-2, the predominant transducer of signals required for physiological and pathological angiogenesis. Here we present the crystal structure of VEGF-C bound to the VEGFR-2 high-affinity-binding site, which consists of immunoglobulin homology domains D2 and D3. This structure reveals a symmetrical 22 complex, in which left-handed twisted receptor domains wrap around the 2-fold axis of VEGF-C. In the VEGFs, receptor specificity is determined by an N-terminal alpha helix and three peptide loops. Our structure shows that two of these loops in VEGF-C bind to VEGFR-2 subdomains D2 and D3, while one interacts primarily with D3. Additionally, the N-terminal helix of VEGF-C interacts with D2, and the groove separating the two VEGF-C monomers binds to the D2/D3 linker. VEGF-C, unlike VEGF-A, does not bind VEGFR-1. We therefore created VEGFR-1/VEGFR-2 chimeric proteins to further study receptor specificity. This biochemical analysis, together with our structural data, defined VEGFR-2 residues critical for the binding of VEGF-A and VEGF-C. Our results provide significant insights into the structural features that determine the high affinity and specificity of VEGF/VEGFR interactions.


Subject(s)
Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor C/chemistry , Vascular Endothelial Growth Factor Receptor-2/chemistry , Animals , Binding Sites/genetics , Cell Line , Cell Survival , Crystallography, X-Ray , Humans , Hydrogen Bonding , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Spodoptera , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-1/chemistry , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/chemistry , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
18.
Vaccine ; 41(20): 3233-3246, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37085458

ABSTRACT

The ongoing SARS-CoV-2 pandemic is controlled but not halted by public health measures and mass vaccination strategies which have exclusively relied on intramuscular vaccines. Intranasal vaccines can prime or recruit to the respiratory epithelium mucosal immune cells capable of preventing infection. Here we report a comprehensive series of studies on this concept using various mouse models, including HLA class II-humanized transgenic strains. We found that a single intranasal (i.n.) dose of serotype-5 adenoviral vectors expressing either the receptor binding domain (Ad5-RBD) or the complete ectodomain (Ad5-S) of the SARS-CoV-2 spike protein was effective in inducing i) serum and bronchoalveolar lavage (BAL) anti-spike IgA and IgG, ii) robust SARS-CoV-2-neutralizing activity in the serum and BAL, iii) rigorous spike-directed T helper 1 cell/cytotoxic T cell immunity, and iv) protection of mice from a challenge with the SARS-CoV-2 beta variant. Intramuscular (i.m.) Ad5-RBD or Ad5-S administration did not induce serum or BAL IgA, and resulted in lower neutralizing titers in the serum. Moreover, prior immunity induced by an intramuscular mRNA vaccine could be potently enhanced and modulated towards a mucosal IgA response by an i.n. Ad5-S booster. Notably, Ad5 DNA was found in the liver or spleen after i.m. but not i.n. administration, indicating a lack of systemic spread of the vaccine vector, which has been associated with a risk of thrombotic thrombocytopenia. Unlike in otherwise genetically identical HLA-DQ6 mice, in HLA-DQ8 mice Ad5-RBD vaccine was inferior to Ad5-S, suggesting that the RBD fragment does not contain a sufficient collection of helper-T cell epitopes to constitute an optimal vaccine antigen. Our data add to previous promising preclinical results on intranasal SARS-CoV-2 vaccination and support the potential of this approach to elicit mucosal immunity for preventing transmission of SARS-CoV-2.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Administration, Intranasal , Disease Models, Animal , Immunoglobulin A
19.
FASEB J ; 25(9): 2980-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21613573

ABSTRACT

Receptor tyrosine kinases play essential roles in tissue development and homeostasis, and aberrant signaling by these molecules is the basis of many diseases. Understanding the activation mechanism of these receptors is thus of high clinical relevance. We investigated vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which regulate blood and lymph vessel formation. We analyzed the structural changes in the extracellular receptor domain that were induced by ligand binding and that represent the initial step in transmembrane signaling, culminating in the activation of the intracellular receptor kinase domain. High-resolution structural information for the ligand binding domain became available recently, but the flexibility of the extracellular domain and inhomogeneous glycosylation of VEGFRs have prevented the production of highly diffracting crystals of the entire extracellular domain so far. Therefore, we chose to further investigate VEGFR structure by small-angle X-ray scattering in solution (SAXS). SAXS data were combined with independent distance restraint determination obtained by mass spectrometric analysis of chemically cross-linked ligand/receptor complexes. With these data, we constructed a structural model of the entire extracellular receptor domain in the unbound form and in complex with VEGF.


Subject(s)
Scattering, Small Angle , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor Receptor-2/chemistry , X-Ray Diffraction , Binding Sites , Ligands , Mass Spectrometry , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
20.
J Clin Invest ; 132(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35763346

ABSTRACT

Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C-induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110α subunit or with small-molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C-induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.


Subject(s)
Lymphangiogenesis , Lymphedema , Animals , Endothelial Cells/metabolism , Humans , Lymphangiogenesis/physiology , Lymphedema/metabolism , Mice , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Receptors, TIE/metabolism , Ribonuclease, Pancreatic/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL