ABSTRACT
The field of neurostimulation of the cerebellum either with transcranial magnetic stimulation (TMS; single pulse or repetitive (rTMS)) or transcranial direct current stimulation (tDCS; anodal or cathodal) is gaining popularity in the scientific community, in particular because these stimulation techniques are non-invasive and provide novel information on cerebellar functions. There is a consensus amongst the panel of experts that both TMS and tDCS can effectively influence cerebellar functions, not only in the motor domain, with effects on visually guided tracking tasks, motor surround inhibition, motor adaptation and learning, but also for the cognitive and affective operations handled by the cerebro-cerebellar circuits. Verbal working memory, semantic associations and predictive language processing are amongst these operations. Both TMS and tDCS modulate the connectivity between the cerebellum and the primary motor cortex, tuning cerebellar excitability. Cerebellar TMS is an effective and valuable method to evaluate the cerebello-thalamo-cortical loop functions and for the study of the pathophysiology of ataxia. In most circumstances, DCS induces a polarity-dependent site-specific modulation of cerebellar activity. Paired associative stimulation of the cerebello-dentato-thalamo-M1 pathway can induce bidirectional long-term spike-timing-dependent plasticity-like changes of corticospinal excitability. However, the panel of experts considers that several important issues still remain unresolved and require further research. In particular, the role of TMS in promoting cerebellar plasticity is not established. Moreover, the exact positioning of electrode stimulation and the duration of the after effects of tDCS remain unclear. Future studies are required to better define how DCS over particular regions of the cerebellum affects individual cerebellar symptoms, given the topographical organization of cerebellar symptoms. The long-term neural consequences of non-invasive cerebellar modulation are also unclear. Although there is an agreement that the clinical applications in cerebellar disorders are likely numerous, it is emphasized that rigorous large-scale clinical trials are missing. Further studies should be encouraged to better clarify the role of using non-invasive neurostimulation techniques over the cerebellum in motor, cognitive and psychiatric rehabilitation strategies.
Subject(s)
Cerebellum/physiopathology , Electric Stimulation Therapy , Transcranial Magnetic Stimulation , Animals , Cerebellar Ataxia/physiopathology , Cerebellar Ataxia/therapy , Electric Stimulation Therapy/methods , Humans , Mental Processes/physiology , Motor Cortex/physiopathology , Psychomotor Performance/physiology , Transcranial Magnetic Stimulation/methodsABSTRACT
DNA double-strand breaks (DSBs) are toxic lesions triggered not only by environmental sources, but also by a large number of physiological processes. Of importance, endogenous DSBs frequently occur in genomic loci that are transcriptionally active. Recent work suggests that DSBs occurring in transcribed loci are handled by specific pathway(s) that entail local transcriptional repression, chromatin signaling, the involvement of RNA species and DSB mobility. In this Graphical Review we provide an updated view of the "Transcription-Coupled DSB Repair" (TC-DSBR) pathway(s) that are mounted at DSBs occurring in loci transcribed by RNA Polymerase I (RNAPI) or RNA Polymerase II (RNAPII), highlighting differences and common features, as well as yet unanswered questions.
Subject(s)
DNA Breaks, Double-Stranded , Recombinational DNA Repair , Transcription, Genetic , Animals , Chromatin/metabolism , DNA/metabolism , DNA Repair , Humans , RNA Polymerase I/metabolism , RNA Polymerase II/metabolismABSTRACT
Cognitive deficits during nicotine withdrawal may contribute to smoking relapse. However, interacting effects of chronic nicotine dependence and acute nicotine withdrawal on cognitive control are poorly understood. Here we examine the effects of nicotine dependence (trait; smokers (n = 24) vs. non-smoking controls; n = 20) and acute nicotinic stimulation (state; administration of nicotine and varenicline, two FDA-approved smoking cessation aids, during abstinence), on two well-established tests of inhibitory control, the Go-Nogo task and the Flanker task, during fMRI scanning. We compared performance and neural responses between these four pharmacological manipulations in a double-blind, placebo-controlled crossover design. As expected, performance in both tasks was modulated by nicotine dependence, abstinence, and pharmacological manipulation. However, effects were driven entirely by conditions that required less inhibitory control. When demand for inhibitory control was high, abstinent smokers showed no deficits. By contrast, acutely abstinent smokers showed performance deficits in easier conditions and missed more trials. Go-Nogo fMRI results showed decreased inhibition-related neural activity in right anterior insula and right putamen in smokers and decreased dorsal anterior cingulate cortex activity on nicotine across groups. No effects were found on inhibition-related activity during the Flanker task or on error-related activity in either task. Given robust nicotinic effects on physiology and behavioral deficits in attention, we are confident that pharmacological manipulations were effective. Thus findings fit a recent proposal that abstinent smokers show decreased ability to divert cognitive resources at low or intermediate cognitive demand, while performance at high cognitive demand remains relatively unaffected, suggesting a primary attentional deficit during acute abstinence.
Subject(s)
Attention/drug effects , Brain/drug effects , Executive Function/drug effects , Inhibition, Psychological , Nicotine/administration & dosage , Nicotinic Agonists/administration & dosage , Tobacco Use Disorder/physiopathology , Tobacco Use Disorder/psychology , Adolescent , Adult , Attention/physiology , Brain/physiopathology , Brain Mapping , Cross-Over Studies , Double-Blind Method , Executive Function/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Smoking Cessation/psychology , Varenicline/administration & dosage , Young AdultABSTRACT
This study assessed the accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater of 350 PE after three years of operation. Metal concentrations in the influent wastewater, effluent, sediment, leaves, stems, and belowground biomass of Phragmites australis were analysed. Spatial variations were assessed by sampling at increasing distance from the inlet and at different positions across the width of the reed bed. All metals except Fe and Mn were efficiently removed in the CW, total metal concentrations in the effluent complied with basic environmental quality standards for surface water, and dissolved metal concentrations were often lower than analytical detection limits. Removal efficiencies varied between 49% for Ni and 93% for Al. Export of dissolved Mn and particulate Fe occurred, probably related to redox conditions in the sediment. After 3 years of operation, the sediment in the inlet area was significantly contaminated with Zn, Cu, and Cd, whereas Pb could form a contamination problem within the near future. The Cr and Ni levels in the sediment were low throughout the entire reed bed. At this stage of operation, the contamination problem was still situated within the inlet area and metal concentrations in the sediment decreased towards background values further along the treatment path. An exponential decrease of the metal mass in the sediment and belowground biomass was seen for all metals except Mn. Contrary to the other metals, Mn concentrations in the sediment increased with distance. For all metals, less than 2% of the mass removed from the wastewater after passage through the reed bed is accumulated in the aboveground reed biomass. The sediment acts as the primary sink for metals.
Subject(s)
Metals, Heavy/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Wetlands , Belgium , Biomass , Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/metabolism , Plant Structures/chemistry , Plant Structures/metabolism , Poaceae/chemistry , Poaceae/metabolism , Waste Disposal, Fluid/instrumentation , Water Movements , Water Pollutants, Chemical/metabolism , Water Pollution/prevention & controlABSTRACT
Decaying organic matter plays an important role in the cycling of metals in wetland ecosystems. Sorption kinetics of Cu(II) on Phragmites australis leaf and stem litter were studied. Fresh leaf and stem litter was sampled from a surface flow wetland at the end of the growing season. The effect of decomposition stage was studied with litter that had been decomposing for a period of 5 months. The Lagergren pseudo-first-order model, the pseudo-second-order model, the Elovich equation and two diffusion models based on spherical intra-particle diffusion were fitted to the experimental data. The sorption capacity was significantly affected by the decomposition of the litter. The sorption process was best described by the pseudo-second-order kinetics (R(2) approximately 0.99) but the rate constant was strongly dependent on the initial Cu concentration. The intra-particle diffusion model fitted the data only slightly less (R(2)>0.95) than the pseudo-second-order model. A theoretical comparison revealed that the good fit with the pseudo-second-order kinetics could be indicative of intra-particle diffusion. Sorption kinetics observed for the leaf and stem litter at different metal concentrations showed a fast initial sorption followed by a slow sorption phase.
Subject(s)
Copper/analysis , Plant Leaves/chemistry , Plant Stems/chemistry , Poaceae/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Copper/chemistry , Copper/isolation & purification , Diffusion , Environmental Monitoring , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purificationABSTRACT
The removal of Co, Ni, Cu and Zn from synthetic industrial wastewater was studied in subsurface flow constructed wetland microcosms filled with gravel or a gravel/straw mixture. Half of the microcosms were planted with Phragmites australis and half were left unplanted. All microcosms received low-strength wastewater (1 mg L(-1) of Co, Ni, and Zn, 0.5 mg L(-1) Cu, 2,000mg L(-1) SO4) during seven 14-day incubation batches. The pore water was regularly monitored at two depths for heavy metals, sulphate, organic carbon and redox potential. Sorption properties of gravel and straw were assessed in a separate experiment. A second series of seven incubation batches with high-strength wastewater (10 mg L(-1) of each metal, 2,000 mg L(-1) SO4) was then applied to saturate the substrate. Glucose was added to the gravel microcosms together with the high-strength wastewater. Sorption processes were responsible for metal removal during start-up, with the highest removal efficiencies in the gravel microcosms. The lower initial efficiencies in the gravel/straw microcosms were presumably caused by the decomposition of straw. However, after establishment of anaerobic conditions (Eh approximately -200 mV), precipitation as metal sulphides provided an additional removal pathway in the gravel/straw microcosms. The addition of glucose to gravel microcosms enhanced sulphate reduction and metal removal, although Phragmites australis negatively affected these processes in the top-layer of all microcosms.
Subject(s)
Biodegradation, Environmental , Metals, Heavy/isolation & purification , Sulfates/chemistry , Water Purification/methods , Wetlands , Adsorption , Waste Disposal, Fluid , Water MovementsABSTRACT
Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof.
Subject(s)
Brassica rapa/metabolism , Cannabis/metabolism , Helianthus/metabolism , Metals, Heavy/metabolism , Zea mays/metabolism , Biodegradation, Environmental , Brassica rapa/growth & development , Cannabis/growth & development , Chelating Agents/chemistry , Edetic Acid/chemistry , Ethylenediamines/chemistry , Geologic Sediments , Helianthus/growth & development , Metals, Heavy/analysis , Metals, Heavy/chemistry , Plant Shoots/chemistry , Plant Shoots/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Succinates/chemistry , Waste Management/methods , Zea mays/growth & developmentSubject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Rain , Sewage , Water Pollutants, Chemical/analysis , Ecosystem , Environmental Monitoring , Geologic Sediments/chemistry , Particle Size , Sewage/adverse effects , Sewage/analysis , Waste Disposal, Fluid/methods , Water Movements , Water PurificationSubject(s)
Copper/analysis , Soil/analysis , Waste Disposal, Fluid , Zinc/analysis , Agriculture , Agrochemicals/analysis , EcosystemABSTRACT
Recent research has characterized the anatomical connectivity of the cortico-cerebellar system - a large and important fibre system in the primate brain. Within this system, there are reciprocal projections between the prefrontal cortex and Crus II of the cerebellar cortex, which both play important roles in the acquisition and execution of cognitive skills. Here, we propose that this system also plays a particular role in sustaining skilled cognitive performance in patients with Relapsing-Remitting Multiple Sclerosis (RRMS), in whom advancing neuropathology causes increasingly inefficient information processing. We scanned RRMS patients and closely matched healthy subjects while they performed the Paced Auditory Serial Addition Test (PASAT), a demanding test of information processing speed, and a control task. This enabled us to localize differences between conditions that change as a function of group (group-by-condition interactions). Hemodynamic activity in some patient populations with CNS pathology are not well understood and may be atypical, so we avoided analysis strategies that rely exclusively on models of hemodynamic activity derived from the healthy brain, using instead an approach that combined a 'model-free' analysis technique (Tensor Independent Component Analysis, TICA) that was relatively free of such assumptions, with a post-hoc 'model-based' approach (General Linear Model, GLM). Our results showed group-by-condition interactions in cerebellar cortical Crus II. We suggest that this area may have in role maintaining performance in working memory tasks by compensating for inefficient data transfer associated with white matter lesions in MS.
Subject(s)
Cerebellum/pathology , Mental Processes/physiology , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/psychology , Adult , Cerebellar Cortex/pathology , Cognition/physiology , Data Interpretation, Statistical , Female , Humans , Image Processing, Computer-Assisted , Intelligence Tests , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Oxygen/blood , Prefrontal Cortex/pathologyABSTRACT
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soil amendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1,1,10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05, 0.25, 0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (approximately soluble fraction), extraction with 1 M NH4OAc at pH 7 (approximately exchangeable fraction), and extraction with 0.5 M NH4OAc + 05 M HOAc + 0.02 M EDTA at pH 4.65 (approximately potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but a strong exponential decrease of labile metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annuus will be presented.
Subject(s)
Citric Acid/chemistry , Edetic Acid/chemistry , Helianthus/metabolism , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Biodegradation, EnvironmentalABSTRACT
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.
Subject(s)
Citric Acid/chemistry , Edetic Acid/chemistry , Helianthus/metabolism , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Helianthus/growth & developmentABSTRACT
Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.