Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Nanotechnology ; 33(40)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35196259

ABSTRACT

In and Sn are the type of catalysts which do not introduce deep level electrical defects within the bandgap of germanium (Ge). However, Ge nanowires produced using these catalysts usually have a large diameter, a tapered morphology, and mixed crystalline and amorphous phases. In this study, we show that plasma-assisted vapor-liquid-solid (PA-VLS) method can be used to synthesize Ge nanowires. Moreover, at certain parameter domains, the sidewall deposition issues of this synthesis method can be avoided and long, thin tapering-free monocrystalline Ge nanowires can be obtained with In and Sn catalysts. We find two quite different parameter domains where Ge nanowire growth can occur via PA-VLS using In and Sn catalysts: (i) a low temperature-low pressure domain, below âˆ¼235 °C at a GeH4partial pressure of âˆ¼6 mTorr, where supersaturation in the catalyst occurs thanks to the low solubility of Ge in the catalysts, and (ii) a high temperature-high pressure domain, at ∼400 °C and a GeH4partial pressure above âˆ¼20 mTorr, where supersaturation occurs thanks to the high GeH4concentration. While growth at 235 °C results in tapered short wires, operating at 400 °C enables cylindrical nanowire growth. With the increase of growth temperature, the crystalline structure of the nanowires changes from multi-crystalline to mono-crystalline and their growth rate increases from ∼0.3 nm s-1to 5 nm s-1. The cylindrical Ge nanowires grown at 400°C usually have a length of few microns and a radius of around 10 nm, which is well below the Bohr exciton radius in bulk Ge (24.3 nm). To explain the growth mechanism, a detailed growth model based on the key chemical reactions is provided.

2.
Nanotechnology ; 32(7): 072001, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33091889

ABSTRACT

The ability to grow defect-free nanowires in lattice-mismatched material systems and to design their properties has made them ideal candidates for applications in fields as diverse as nanophotonics, nanoelectronics and medicine. After studying nanostructures consisting of elemental and binary compound semiconductors, scientists turned their attention to more complex systems-ternary nanowires. Composition control is key in these nanostructures since it enables bandgap engineering. The use of different combinations of compounds and different growth methods has resulted in numerous investigations. The aim of this review is to present a survey of the material systems studied to date, and to give a brief overview of the issues tackled and the progress achieved in nanowire composition tuning. We focus on ternary III x III1-x V nanowires (AlGaAs, AlGaP, AlInP, InGaAs, GaInP and InGaSb) and IIIV x V1-x nanowires (InAsP, InAsSb, InPSb, GaAsP, GaAsSb and GaSbP).

3.
Nanomaterials (Basel) ; 14(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39195371

ABSTRACT

Compositional control over vapor-liquid-solid III-V ternary nanowires based on group V intermix (VLS IIIVxV1-x NWs) is complicated by the presence of a catalyst droplet with extremely low and hence undetectable concentrations of group V atoms. The liquid-solid and vapor-solid distributions of IIIVxV1-x NWs at a given temperature are influenced by the kinetic parameters (supersaturation and diffusion coefficients in liquid, V/III flux ratio in vapor), temperature and thermodynamic constants. We analyze the interplay of the kinetic and thermodynamic factors influencing the compositions of VLS IIIVxV1-x NWs and derive a new vapor-solid distribution that contains only one parameter of liquid, the ratio of the diffusion coefficients of dissimilar group V atoms. The unknown concentrations of group V atoms in liquid have no influence on the NW composition at high enough levels of supersaturation in liquid. The simple analytic shape of this vapor-solid distribution is regulated by the total V/III flux ratio in vapor. Calculating the temperature-dependent desorption rates, we show that the purely kinetic regime of the liquid-solid growth occurs for VLS IIIVxV1-x NWs in a wide range of conditions. The model fits the data well on the vapor-solid distributions of VLS InPxAs1-x and GaPxAs1-x NWs and can be used for understanding and controlling the compositions of any VLS IIIVxV1-x NWs, as well as modeling the compositional profiles across NW heterostructures in different material systems.

4.
Nanomaterials (Basel) ; 13(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242075

ABSTRACT

Modeling of the growth process is required for the synthesis of III-V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III-V ternary nanowires based on group III or group V intermix were recently developed. In this review, we present and discuss existing modeling strategies for the stationary compositions of III-V ternary nanowires and try to systematize and link them in a general perspective. In particular, we divide the existing approaches into models that focus on the liquid-solid incorporation mechanisms in vapor-liquid-solid nanowires (equilibrium, nucleation-limited, and kinetic models treating the growth of solid from liquid) and models that provide the vapor-solid distributions (empirical, transport-limited, reaction-limited, and kinetic models treating the growth of solid from vapor). We describe the basic ideas underlying the existing models and analyze the similarities and differences between them, as well as the limitations and key factors influencing the stationary compositions of III-V nanowires versus the growth method. Overall, this review provides a basis for choosing a modeling approach that is most appropriate for a particular material system and epitaxy technique and that underlines the achieved level of the compositional modeling of III-V ternary nanowires and the remaining gaps that require further studies.

5.
Nanomaterials (Basel) ; 13(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764616

ABSTRACT

GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy.

6.
Nanomaterials (Basel) ; 12(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35630920

ABSTRACT

A new model for the radial growth of self-catalyzed III-V nanowires on different substrates is presented, which describes the nanowire morphological evolution without any free parameters. The model takes into account the re-emission of group III atoms from a mask surface and the shadowing effect in directional deposition techniques such as molecular beam epitaxy. It is shown that radial growth is faster for larger pitches of regular nanowire arrays or lower surface density, and can be suppressed by increasing the V/III flux ratio or decreasing re-emission. The model describes quite well the data on the morphological evolution of Ga-catalyzed GaP and GaAs nanowires on different substrates, where the nanowire length increases linearly and the radius enlarges sub-linearly with time. The obtained analytical expressions and numerical data should be useful for morphological control over different III-V nanowires in a wide range of growth conditions.

7.
J Phys Chem Lett ; 12(31): 7590-7595, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34347497

ABSTRACT

The nanowire geometry is favorable for the growth of ternary semiconductor materials, because the composition and properties can be tuned freely without substrate lattice matching. To achieve precise control of the composition in ternary semiconductor nanowires, a deeper understanding of the growth is required. One unknown aspect of seeded nanowire growth is how the composition of the catalyst nanoparticle affects the resulting composition of the growing nanowire. We report the first in situ measurements of the nanoparticle and InxGa1-xAs nanowire compositional relationship using an environmental transmission electron microscopy setup. The compositions were measured and correlated during growth, via X-ray energy dispersive spectroscopy. Contrary to predictions from thermodynamic models, the experimental results do not show a miscibility gap. Therefore, we construct a kinetic model that better predicts the compositional trends by suppressing the miscibility gap. The findings imply that compositional control of InxGa1-xAs nanowires is possible across the entire compositional range.

8.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353245

ABSTRACT

We explain the composition of ternary nanowires nucleating from a quaternary liquid melt. The model we derive describes the evolution of the solid composition from the nucleated-limited composition to the kinetic one. The effect of the growth temperature, group V concentration and Au/III concentration ratio on the solid-liquid dependence is studied. It has been shown that the solid composition increases with increasing temperature and Au concentration in the droplet at the fixed In/Ga concentration ratio. The model does not depend on the site of nucleation and the geometry of monolayer growth and is applicable for nucleation and growth on a facet with finite radius. The case of a steady-state (or final) solid composition is considered and discussed separately. While the nucleation-limited liquid-solid composition dependence contains the miscibility gap at relevant temperatures for growth of InxGa1-xAs NWs, the miscibility gap may be suppressed completely in the steady-state growth regime at high supersaturation. The theoretical results are compared with available experimental data via the combination of the here described solid-liquid and a simple kinetic liquid-vapor model.

SELECTION OF CITATIONS
SEARCH DETAIL