Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34559985

ABSTRACT

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Subject(s)
Host-Pathogen Interactions , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Rift Valley fever virus/physiology , Virus Internalization , Animals , Antibody Specificity/immunology , Base Sequence , Brain/pathology , Brain/virology , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Cells, Cultured , Glycoproteins/metabolism , Glycosaminoglycans/metabolism , Glycosylation , Humans , LDL-Receptor Related Protein-Associated Protein/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/deficiency , Membrane Glycoproteins/metabolism , Mice , Protein Binding , Protein Denaturation , Rift Valley Fever/pathology , Rift Valley Fever/prevention & control , Rift Valley Fever/virology , Rift Valley fever virus/immunology
2.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30550789

ABSTRACT

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Subject(s)
Carrier Proteins , DNA-Binding Proteins , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Transcription Factors , Viral Proteins , Virus Replication/physiology , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/pathology , Humans , Protein Interaction Mapping , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
3.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474922

ABSTRACT

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Subject(s)
Cryoelectron Microscopy , Ebolavirus/physiology , Ebolavirus/ultrastructure , Nucleocapsid/ultrastructure , Nucleoproteins/ultrastructure , Virus Assembly , Models, Biological , Mutant Proteins/chemistry , Mutation/genetics , Nucleoproteins/chemistry , Protein Multimerization , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/metabolism
4.
Nat Immunol ; 19(2): 130-140, 2018 02.
Article in English | MEDLINE | ID: mdl-29255269

ABSTRACT

Reactive oxygen species (ROS) are generated by virus-infected cells; however, the physiological importance of ROS generated under these conditions is unclear. Here we found that the inflammation and cell death induced by exposure of mice or cells to sources of ROS were not altered in the absence of canonical ROS-sensing pathways or known cell-death pathways. ROS-induced cell-death signaling involved interactions among the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5 -/- mice showed exacerbated lung inflammation and proinflammatory cytokines in an ozone-exposure model. Similarly, challenge with influenza A virus led to increased infiltration of the virus, lymphocytic bronchiolitis and reduced survival of Pgam5 -/- mice. This pathway, which we have called 'oxeiptosis', was a ROS-sensitive, caspase independent, non-inflammatory cell-death pathway and was important for protection against inflammation induced by ROS or ROS-generating agents such as viral pathogens.


Subject(s)
Cell Death/physiology , Reactive Oxygen Species/metabolism , Animals , Apoptosis Inducing Factor/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , Mice, Knockout , Mitochondrial Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Signal Transduction/physiology
5.
Immunity ; 48(3): 487-499.e5, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29525521

ABSTRACT

Although interferon-induced proteins with tetratricopeptide repeats (IFIT proteins) inhibit infection of many viruses by recognizing their RNA, the regulatory mechanisms involved remain unclear. Here we report a crystal structure of cap 0 (m7GpppN) RNA bound to human IFIT1 in complex with the C-terminal domain of human IFIT3. Structural, biochemical, and genetic studies suggest that IFIT3 binding to IFIT1 has dual regulatory functions: (1) extending the half-life of IFIT1 and thereby increasing its steady-state amounts in cells; and (2) allosterically regulating the IFIT1 RNA-binding channel, thereby enhancing the specificity of recognition for cap 0 but not cap 1 (m7GpppNm) or 5'-ppp RNA. Mouse Ifit3 lacks this key C-terminal domain and does not bind mouse Ifit1. The IFIT3 interaction with IFIT1 is important for restricting infection of viruses lacking 2'-O methylation in their RNA cap structures. Our experiments establish differences in the regulation of IFIT1 orthologs and define targets for modulation of human IFIT protein activity.


Subject(s)
Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Methylation , Mice , Models, Molecular , Molecular Conformation , Protein Binding , Protein Interaction Domains and Motifs , Protein Stability , RNA/chemistry , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Species Specificity , Structure-Activity Relationship
6.
EMBO J ; 40(18): e105658, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34260076

ABSTRACT

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Proline/metabolism , Tyrosine/metabolism , Carrier Proteins , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Protein Binding , Virus Replication
7.
Proc Natl Acad Sci U S A ; 119(33): e2204706119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939689

ABSTRACT

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Subject(s)
Bunyaviridae Infections , Low Density Lipoprotein Receptor-Related Protein-1 , Orthobunyavirus , Virus Internalization , Animals , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Gene Knockout Techniques , Humans , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice , Orthobunyavirus/physiology , South America
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193958

ABSTRACT

Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.


Subject(s)
Mycobacterium tuberculosis/genetics , Type VII Secretion Systems/genetics , Animals , Bacterial Secretion Systems/genetics , Biological Evolution , Evolution, Molecular , Gene Amplification/genetics , Mice , Mycobacterium tuberculosis/metabolism , Type VII Secretion Systems/physiology , Virulence , Virulence Factors/genetics
9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649232

ABSTRACT

Human respiratory syncytial virus (RSV) nonstructural protein 2 (NS2) inhibits host interferon (IFN) responses stimulated by RSV infection by targeting early steps in the IFN-signaling pathway. But the molecular mechanisms related to how NS2 regulates these processes remain incompletely understood. To address this gap, here we solved the X-ray crystal structure of NS2. This structure revealed a unique fold that is distinct from other known viral IFN antagonists, including RSV NS1. We also show that NS2 directly interacts with an inactive conformation of the RIG-I-like receptors (RLRs) RIG-I and MDA5. NS2 binding prevents RLR ubiquitination, a process critical for prolonged activation of downstream signaling. Structural analysis, including by hydrogen-deuterium exchange coupled to mass spectrometry, revealed that the N terminus of NS2 is essential for binding to the RIG-I caspase activation and recruitment domains. N-terminal mutations significantly diminish RIG-I interactions and result in increased IFNß messenger RNA levels. Collectively, our studies uncover a previously unappreciated regulatory mechanism by which NS2 further modulates host responses and define an approach for targeting host responses.


Subject(s)
DEAD Box Protein 58 , Interferon-Induced Helicase, IFIH1 , Interferon-beta , Receptors, Immunologic , Viral Nonstructural Proteins , Crystallography, X-Ray , DEAD Box Protein 58/chemistry , DEAD Box Protein 58/metabolism , Deuterium Exchange Measurement , HEK293 Cells , Humans , Interferon-Induced Helicase, IFIH1/chemistry , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-beta/chemistry , Interferon-beta/metabolism , Protein Binding , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Receptors, Immunologic/chemistry , Receptors, Immunologic/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
10.
Biochemistry ; 62(11): 1744-1754, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37205707

ABSTRACT

A major challenge in defining the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to better understand virally encoded multifunctional proteins and their interactions with host factors. Among the many proteins encoded by the positive-sense, single-stranded RNA genome, nonstructural protein 1 (Nsp1) stands out due to its impact on several stages of the viral replication cycle. Nsp1 is the major virulence factor that inhibits mRNA translation. Nsp1 also promotes host mRNA cleavage to modulate host and viral protein expression and to suppress host immune functions. To better define how this multifunctional protein can facilitate distinct functions, we characterize SARS-CoV-2 Nsp1 by using a combination of biophysical techniques, including light scattering, circular dichroism, hydrogen/deuterium exchange mass spectrometry (HDX-MS), and temperature-dependent HDX-MS. Our results reveal that the SARS-CoV-2 Nsp1 N- and C-terminus are unstructured in solution, and in the absence of other proteins, the C-terminus has an increased propensity to adopt a helical conformation. In addition, our data indicate that a short helix exists near the C-terminus and adjoins the region that binds the ribosome. Together, these findings provide insights into the dynamic nature of Nsp1 that impacts its functions during infection. Furthermore, our results will inform efforts to understand SARS-CoV-2 infection and antiviral development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Biosynthesis , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Virulence Factors/metabolism
11.
J Virol ; 96(20): e0111222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36194021

ABSTRACT

People infected with the mosquito-borne Rift Valley fever virus (RVFV) can suffer from eye-related problems resulting in ongoing vision issues or even permanent blindness. Despite ocular disease being the most frequently reported severe outcome, it is vastly understudied compared to other disease outcomes caused by RVFV. Ocular manifestations of RVFV include blurred vision, uveitis, and retinitis. When an infected individual develops macular or paramacular lesions, there is a 50% chance of permanent vision loss in one or both eyes. The cause of blinding ocular pathology remains unknown in part due to the lack of a tractable animal model. Using 3 relevant exposure routes, both subcutaneous (SC) and aerosol inoculation of Sprague Dawley rats led to RVFV infection of the eye. Surprisingly, direct inoculation of the conjunctiva did not result in successful ocular infection. The posterior segment of the eye, including the optic nerve, choroid, ciliary body, and retina, were all positive for RVFV antigen in SC-infected rats, and live virus was isolated from the eyes. Proinflammatory cytokines and increased leukocyte counts were also found in the eyes of infected rats. Additionally, human ocular cell lines were permissive for Lrp1-dependent RVFV infection. This study experimentally defines viral tropism of RVFV in the posterior segment of the rat eye and characterizes virally-mediated ocular inflammation, providing a foundation for evaluation of vaccines and therapeutics to protect against adverse ocular outcomes. IMPORTANCE Rift Valley fever virus (RVFV) infection leads to eye damage in humans in up to 10% of reported cases. Permanent blindness occurs in 50% of individuals with significant retinal scarring. Despite the prevalence and severity of this outcome, very little is known about the mechanisms of pathogenesis. We addressed this gap by developing a rodent model of ocular disease. Subcutaneous infection of Sprague Dawley rats resulted in infection of the uvea, retina, and optic nerve along with the induction of inflammation within the posterior eye. Infection of human ocular cells induced inflammatory responses and required host entry factors for RVFV infection similar to rodents. This work provides evidence of how RVFV infects the eye, and this information can be applied to help mitigate the devastating outcomes of RVF ocular disease through vaccines or treatments.


Subject(s)
Eye Diseases , Rift Valley Fever , Rift Valley fever virus , Rats , Humans , Animals , Rift Valley fever virus/physiology , Rats, Sprague-Dawley , Inflammation , Cytokines , Aerosols , Blindness
12.
J Biol Chem ; 297(1): 100902, 2021 07.
Article in English | MEDLINE | ID: mdl-34157282

ABSTRACT

The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2-infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell-cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell-cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell-cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell-cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell-cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.


Subject(s)
COVID-19/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cell Fusion , Cell Line , Chlorocebus aethiops , Humans , Protein Processing, Post-Translational , Protein Stability , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Attachment , Virus Internalization
13.
Respirology ; 27(4): 301-310, 2022 04.
Article in English | MEDLINE | ID: mdl-34820940

ABSTRACT

BACKGROUND AND OBJECTIVE: Few head-to-head evaluations of immune responses to different vaccines have been reported. METHODS: Surrogate virus neutralization test (sVNT) antibody levels of adults receiving either two doses of BNT162b2 (n = 366) or CoronaVac (n = 360) vaccines in Hong Kong were determined. An age-matched subgroup (BNT162b2 [n = 49] vs. CoronaVac [n = 49]) was tested for plaque reduction neutralization (PRNT) and spike-binding antibody and T-cell reactivity in peripheral blood mononuclear cells. RESULTS: One month after the second dose of vaccine, BNT162b2 elicited significantly higher PRNT50 , PRNT90 , sVNT, spike receptor binding, spike N-terminal domain binding, spike S2 domain binding, spike FcR binding and antibody avidity levels than CoronaVac. The geometric mean PRNT50 titres in those vaccinated with BNT162b2 and CoronaVac vaccines were 251.6 and 69.45, while PRNT90 titres were 98.91 and 16.57, respectively. All of those vaccinated with BNT162b2 and 45 (91.8%) of 49 vaccinated with CoronaVac achieved the 50% protection threshold for PRNT90. Allowing for an expected seven-fold waning of antibody titres over 6 months for those receiving CoronaVac, only 16.3% would meet the 50% protection threshold versus 79.6% of BNT162b2 vaccinees. Age was negatively correlated with PRNT90 antibody titres. Both vaccines induced SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at 1 month post-vaccination but CoronaVac elicited significantly higher structural protein-specific CD4+ and CD8+ T-cell responses. CONCLUSION: Vaccination with BNT162b2 induces stronger humoral responses than CoronaVac. CoronaVac induces higher CD4+ and CD8+ T-cell responses to the structural protein than BNT162b2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , BNT162 Vaccine , COVID-19/prevention & control , Hong Kong , Humans , Leukocytes, Mononuclear , SARS-CoV-2
14.
Biochemistry ; 58(6): 657-664, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30592210

ABSTRACT

Members of Mononegavirales, the order that includes nonsegmented negative sense RNA viruses (NNSVs), encode a small number of multifunctional proteins. In members of the Filoviridae family, virus protein 35 (VP35) facilitates immune evasion and functions as an obligatory cofactor for viral RNA synthesis. VP35 functions in a manner orthologous to that of phosphoproteins from other NNSVs. Although the critical roles of Ebola viral VP35 (eVP35) in immune evasion and RNA synthesis are well-appreciated, a complete understanding of its organization and its role in carrying out its many functions has yet to be fully realized. In particular, we currently lack information about the role of the oligomerization domain within eVP35. To address this limitation, we report here an investigation of the oligomer structure of eVP35 using hybrid methods that include multiangle light scattering, small-angle X-ray scattering, and cross-linking coupled with mass spectrometry to determine the shape and orientation of the eVP35 oligomer. Our integrative results are consistent with a parallel tetramer in which the N-terminal regions that are required for RNA synthesis are all oriented in the same direction. Furthermore, these results define a framework for targeting the symmetric tetramer for structure-based antiviral discovery.


Subject(s)
Viral Regulatory and Accessory Proteins/chemistry , Amino Acid Sequence , Ebolavirus/chemistry , Escherichia coli/genetics , Protein Domains , Protein Multimerization
15.
J Biol Chem ; 293(16): 6022-6038, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29496999

ABSTRACT

Germline-encoded receptors recognizing common pathogen-associated molecular patterns are a central element of the innate immune system and play an important role in shaping the host response to infection. Many of the innate immune molecules central to these signaling pathways are evolutionarily conserved. LysMD3 is a novel molecule containing a putative peptidoglycan-binding domain that has orthologs in humans, mice, zebrafish, flies, and worms. We found that the lysin motif (LysM) of LysMD3 is likely related to a previously described peptidoglycan-binding LysM found in bacteria. Mouse LysMD3 is a type II integral membrane protein that co-localizes with GM130+ structures, consistent with localization to the Golgi apparatus. We describe here two lines of mLysMD3-deficient mice for in vivo characterization of mLysMD3 function. We found that mLysMD3-deficient mice were born at Mendelian ratios and had no obvious pathological abnormalities. They also exhibited no obvious immune response deficiencies in a number of models of infection and inflammation. mLysMD3-deficient mice exhibited no signs of intestinal dysbiosis by 16S analysis or alterations in intestinal gene expression by RNA sequencing. We conclude that mLysMD3 contains a LysM with cytoplasmic orientation, but we were unable to define a physiological role for the molecule in vivo.


Subject(s)
Gene Deletion , Animals , Autoantigens/analysis , Bacterial Infections/genetics , Bacterial Infections/immunology , CRISPR-Cas Systems , Female , Immunity, Innate , Inflammation/genetics , Inflammation/immunology , Male , Membrane Proteins/analysis , Mice , Mycoses/genetics , Mycoses/immunology , Phylogeny , Virus Diseases/genetics , Virus Diseases/immunology
16.
J Infect Dis ; 218(suppl_5): S553-S564, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29939318

ABSTRACT

Background: Several vaccine platforms have been successfully evaluated for prevention of Ebola virus (EBOV) disease (EVD) in nonhuman primates and humans. Despite remarkable efficacy by multiple vaccines, the immunological correlates of protection against EVD are incompletely understood. Methods: We systematically evaluated the antibody response to various EBOV proteins in 79 nonhuman primates vaccinated with various EBOV vaccine platforms. We evaluated the serum immunoglobulin (Ig)G titers against EBOV glycoprotein (GP), the ability of the vaccine-induced antibodies to bind GP at acidic pH or to displace ZMapp, and virus neutralization titers. The correlation of these outcomes with survival from EVD was evaluated by appropriate statistical methods. Results: Irrespective of the vaccine platform, protection from EVD strongly correlated with anti-GP IgG titers. The GP-directed antibody levels required for protection in animals vaccinated with virus-like particles (VLPs) lacking nucleoprotein (NP) was significantly higher than animals immunized with NP-containing VLPs or adenovirus-expressed GP, platforms that induce strong T-cell responses. Furthermore, protective immune responses correlated with anti-GP antibody binding strength at acidic pH, neutralization of GP-expressing pseudovirions, and the ability to displace ZMapp components from GP. Conclusions: These findings suggest key quantitative and qualitative attributes of antibody response to EVD vaccines as potential correlates of protection.


Subject(s)
Antibodies, Viral/immunology , Hemorrhagic Fever, Ebola/prevention & control , Vaccination , Animals , Antibodies, Viral/blood , Ebola Vaccines/immunology , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/mortality , Hydrogen-Ion Concentration , Macaca fascicularis , Nucleoproteins/immunology , Virion/immunology
17.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27974555

ABSTRACT

Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. IMPORTANCE: The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition of IFN signaling and VP24 stability. The effect of KPNA interaction on VP24 stability is a novel functional consequence of this virus-host interaction, and the differences identified between viral species may contribute to differences in pathogenesis.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Interferons/metabolism , Viral Proteins/metabolism , alpha Karyopherins/metabolism , Amino Acid Sequence , Cell Line , Hemorrhagic Fever, Ebola/genetics , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Isoforms , Protein Stability , Recombinant Fusion Proteins , Structure-Activity Relationship , Viral Proteins/chemistry , alpha Karyopherins/chemistry , alpha Karyopherins/genetics
18.
Curr Top Microbiol Immunol ; 411: 293-322, 2017.
Article in English | MEDLINE | ID: mdl-28685291

ABSTRACT

This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.


Subject(s)
Filoviridae/immunology , Immunity, Innate/immunology , Virus Replication/immunology , Animals , Ebolavirus/growth & development , Ebolavirus/immunology , Filoviridae/pathogenicity , Filoviridae/physiology , Host-Pathogen Interactions/immunology , Interferons/immunology
20.
J Virol ; 89(9): 5148-53, 2015 May.
Article in English | MEDLINE | ID: mdl-25741013

ABSTRACT

Ebola virus VP35 inhibits alpha/beta interferon production and functions as a viral polymerase cofactor. Previously, the 8-kDa cytoplasmic dynein light chain (LC8) was demonstrated to interact with VP35, but the functional consequences were unclear. Here we demonstrate that the interaction is direct and of high affinity and that binding stabilizes the VP35 N-terminal oligomerization domain and enhances viral RNA synthesis. Mutational analysis demonstrates that VP35 interaction is required for the functional effects of LC8.


Subject(s)
Cytoplasmic Dyneins/metabolism , Ebolavirus/physiology , Host-Pathogen Interactions , Protein Interaction Mapping , RNA, Viral/biosynthesis , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication , DNA Mutational Analysis , Ebolavirus/genetics , Protein Binding , Viral Regulatory and Accessory Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL