Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526661

ABSTRACT

The choroid plexus (CP) is an extensively vascularized neuroepithelial tissue that projects into the brain ventricles. The restriction of transepithelial transport across the CP establishes the blood-cerebrospinal fluid (CSF) barrier that is fundamental to the homeostatic regulation of the central nervous system microenvironment. However, the molecular mechanisms that control this process remain elusive. Here we show that the genetic ablation of Sox9 in the hindbrain CP results in a hyperpermeable blood-CSF barrier that ultimately upsets the CSF electrolyte balance and alters CSF protein composition. Mechanistically, SOX9 is required for the transcriptional up-regulation of Col9a3 in the CP epithelium. The reduction of Col9a3 expression dramatically recapitulates the blood-CSF barrier defects of Sox9 mutants. Loss of collagen IX severely disrupts the structural integrity of the epithelial basement membrane in the CP, leading to progressive loss of extracellular matrix components. Consequently, this perturbs the polarized microtubule dynamics required for correct orientation of apicobasal polarity and thereby impedes tight junction assembly in the CP epithelium. Our findings reveal a pivotal cascade of SOX9-dependent molecular events that is critical for construction of the blood-CSF barrier.


Subject(s)
Blood/metabolism , Cell Polarity , Cerebrospinal Fluid/metabolism , Choroid Plexus/metabolism , Collagen Type IX/metabolism , Epithelial Cells/cytology , SOX9 Transcription Factor/metabolism , Animals , Basement Membrane/metabolism , Collagen Type IX/genetics , Electrolytes/cerebrospinal fluid , Epithelial Cells/metabolism , Epithelium/metabolism , Extracellular Matrix/metabolism , Gene Deletion , Gene Knockdown Techniques , Mice, Knockout , Microtubules/metabolism , Tight Junctions/metabolism , Transcription, Genetic
2.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273496

ABSTRACT

PE/PPE proteins secreted by the ESX-5 type VII secretion system constitute a major protein repertoire in pathogenic mycobacteria and are essential for bacterial survival, pathogenicity, and host-pathogen interaction; however, little is known about their expression and secretion. The scarcity of arginine and lysine residues in PE/PPE protein sequences and the high homology of their N-terminal domains limit protein identification using classical trypsin-based proteomic methods. This study used endoproteinase AspN and trypsin to characterize the proteome of Mycobacterium marinum. Twenty-seven PE/PPE proteins were uniquely identified in AspN digests, especially PE_PGRS proteins. These treatments allowed the identification of approximately 50% of the PE/PPE pool encoded in the genome. Moreover, EspG5 pulldown assays retrieved 44 ESX-5-associated PPE proteins, covering 85% of the PPE pool in the identified proteome. The identification of PE/PE_PGRS proteins in the EspG5 interactome suggested the presence of PE-PPE pairs. The correlation analysis between protein abundance and phylogenetic relationships found potential PE/PPE pairs, indicating the presence of multiple PE/PE_PGRS partners in one PPE. We validated that EspG5 interacted with PPE31 and PPE32 and mapped critical residues for complex formation. The modified proteomic platform increases the coverage of PE/PPE proteins and elucidates the expression and localization of these proteins.


Subject(s)
Bacterial Proteins , Mycobacterium marinum , Proteome , Mycobacterium marinum/metabolism , Mycobacterium marinum/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Proteome/metabolism , Proteomics/methods , Phylogeny , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/genetics , Substrate Specificity
3.
Anal Bioanal Chem ; 415(8): 1465-1476, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36656349

ABSTRACT

Organoid culture is a promising biomedical technology that requires specialized growth factors. Recently, a recombinant L-WRN cell line has been extensively used to generate conditioned medium (L-CM) for organoid culture. Nevertheless, methods for evaluating the stability of the L-WRN cells have been limited. In this study, a novel proteomics-based approach was developed to analyze the secretome of the cells. Serum-free L-CM was lyophilized, precipitated by trichloroacetic acid, and desalted prior to analysis by liquid chromatography-tandem mass spectrometry. Data-dependent acquisition (DDA) was conducted for the untargeted secretome profiling of the cells, and parallel reaction monitoring (PRM) was applied for the targeted quantification of the Wnt3A, R-spondin3, and noggin proteins (WRNs). This study also compared the performance of two types of PRM methods, namely MS1-independent PRM and MS1-dependent PRM, that can be executed on an Orbitrap instrument. The results showed that the growth of mouse intestinal organoids was closely related to the use of L-CM. The composition of L-CM could be markedly affected by the medium collection scheme. A total of 1725, 2302, and 2681 proteins were identified from the L-CM collected on day 5, day 9, and day 13, respectively. The MS1-independent PRM outperformed the MS1-dependent PRM and effectively quantified the WRNs with high repeatability and specificity. In conclusion, by integrating untargeted and targeted proteomics, this study develops a mass spectrometry-based method for the secretome analysis and quality control of the L-WRN cells. The methodology and findings of the present work will benefit future studies on organoids and secretomes.


Subject(s)
Proteomics , Secretome , Animals , Mice , Proteomics/methods , Chromatography, Liquid , Mass Spectrometry/methods , Cell Line , Werner Syndrome Helicase
4.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202585

ABSTRACT

Cultured keratinocytes are desirable models for biological and medical studies. However, primary keratinocytes are difficult to maintain, and there has been little research on lingual keratinocyte culture. Here, we investigated the effect of Y-27632, a Rho kinase (ROCK) inhibitor, on the immortalization and characterization of cultured rat lingual keratinocyte (RLKs). Three Y-27632-supplemented media were screened for the cultivation of RLKs isolated from Sprague-Dawley rats. Phalloidin staining and TUNEL assay were applied to visualize cytoskeleton dynamics and cell apoptosis following Y-27632 removal. Label-free proteomics, RT-PCR, calcium imaging, and cytogenetic studies were conducted to characterize the cultured cells. Results showed that RLKs could be conditionally immortalized in a high-calcium medium in the absence of feeder cells, although they did not exhibit normal karyotypes. The removal of Y-27632 from the culture medium led to reversible cytoskeletal reorganization and nuclear enlargement without triggering apoptosis, and a total of 239 differentially expressed proteins were identified by proteomic analysis. Notably, RLKs derived from the non-taste epithelium expressed some molecular markers characteristic of taste bud cells, yet calcium imaging revealed that they rarely responded to tastants. Collectively, we established a high-calcium and feeder-free culture method for the long-term maintenance of RLKs. Our results shed some new light on the immortalization and differentiation of lingual keratinocytes.


Subject(s)
Amides/pharmacology , Calcium/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Animals , Cell Culture Techniques , Cells, Cultured , Rats
SELECTION OF CITATIONS
SEARCH DETAIL