Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 117(29): 17296-17307, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32631998

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain. Rodent models containing familial LRRK2 mutations often lack robust PD-like neurodegenerative phenotypes. Here, we develop a robust preclinical model of PD in adult rats induced by the brain delivery of recombinant adenoviral vectors with neuronal-specific expression of human LRRK2 harboring the most common G2019S mutation. In this model, G2019S LRRK2 induces the robust degeneration of substantia nigra dopaminergic neurons, a pathological hallmark of PD. Introduction of a stable kinase-inactive mutation or administration of the selective kinase inhibitor, PF-360, attenuates neurodegeneration induced by G2019S LRRK2. Neuroprotection provided by pharmacological kinase inhibition is mediated by an unusual mechanism involving the robust destabilization of human LRRK2 protein in the brain relative to endogenous LRRK2. Our study further demonstrates that G2019S LRRK2-induced dopaminergic neurodegeneration critically requires normal GTPase activity, as hypothesis-testing mutations that increase GTP hydrolysis or impair GTP-binding activity provide neuroprotection although via distinct mechanisms. Taken together, our data demonstrate that G2019S LRRK2 induces neurodegeneration in vivo via a mechanism that is dependent on kinase and GTPase activity. Our study provides a robust rodent preclinical model of LRRK2-linked PD and nominates kinase inhibition and modulation of GTPase activity as promising disease-modifying therapeutic targets.


Subject(s)
Dopaminergic Neurons/metabolism , GTP Phosphohydrolases/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Cell Line , Disease Models, Animal , Dopamine/metabolism , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mice, Knockout , Mutation , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Parkinson Disease/pathology , Phenotype , Pilot Projects , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Wistar , Substantia Nigra
2.
Proc Natl Acad Sci U S A ; 116(12): 5765-5774, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30842285

ABSTRACT

Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene represent a cause of late-onset, autosomal dominant familial Parkinson's disease (PD). A single missense mutation, D620N, is considered pathogenic based upon its segregation with disease in multiple families with PD. At present, the mechanism(s) by which familial VPS35 mutations precipitate neurodegeneration in PD are poorly understood. Here, we employ a germline D620N VPS35 knockin (KI) mouse model of PD to formally establish the age-related pathogenic effects of the D620N mutation at physiological expression levels. Our data demonstrate that a heterozygous or homozygous D620N mutation is sufficient to reproduce key neuropathological hallmarks of PD as indicated by the progressive degeneration of nigrostriatal pathway dopaminergic neurons and widespread axonal pathology. Unexpectedly, endogenous D620N VPS35 expression induces robust tau-positive somatodendritic pathology throughout the brain as indicated by abnormal hyperphosphorylated and conformation-specific tau, which may represent an important and early feature of mutant VPS35-induced neurodegeneration in PD. In contrast, we find no evidence for α-synuclein-positive neuropathology in aged VPS35 KI mice, a hallmark of Lewy body pathology in PD. D620N VPS35 expression also fails to modify the lethal neurodegenerative phenotype of human A53T-α-synuclein transgenic mice. Finally, by crossing VPS35 KI and null mice, our data demonstrate that a single D620N VPS35 allele is sufficient for survival and early maintenance of dopaminergic neurons, indicating that the D620N VPS35 protein is fully functional. Our data raise the tantalizing possibility of a pathogenic interplay between mutant VPS35 and tau for inducing neurodegeneration in PD.


Subject(s)
Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/physiology , tau Proteins/metabolism , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Gene Knock-In Techniques , Male , Mice , Mutation , Nervous System Diseases/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Neuropathology , Parkinson Disease/genetics , Protein Transport , alpha-Synuclein/metabolism , tau Proteins/physiology
3.
Neurobiol Dis ; 130: 104525, 2019 10.
Article in English | MEDLINE | ID: mdl-31276792

ABSTRACT

Animal models that accurately recapitulate the accumulation of alpha-synuclein (α-syn) inclusions, progressive neurodegeneration of the nigrostriatal system and motor deficits can be useful tools for Parkinson's disease (PD) research. The preformed fibril (PFF) synucleinopathy model in rodents generally displays these PD-relevant features, however, the magnitude and predictability of these events is far from established. We therefore sought to optimize the magnitude of α-syn accumulation and nigrostriatal degeneration, and to understand the time course of both. Rats were injected unilaterally with different quantities of α-syn PFFs (8 or 16 µg of total protein) into striatal sites selected to concentrate α-syn inclusion formation in the substantia nigra pars compacta (SNpc). Rats displayed an α-syn PFF quantity-dependent increase in the magnitude of ipsilateral SNpc inclusion formation at 2 months and bilateral loss of nigral dopamine neurons at 6 months. Unilateral 16 µg PFF injection also resulted in modest sensorimotor deficits in forelimb adjusting steps associated with degeneration at 6 months. Bilateral injection of 16 µg α-syn PFFs resulted in symmetric bilateral degeneration equivalent to the ipsilateral nigral degeneration observed following unilateral 16 µg PFF injection (~50% loss). Bilateral PFF injections additionally resulted in alterations in several gait analysis parameters. These α-syn PFF parameters can be applied to generate a reproducible synucleinopathy model in rats with which to study pathogenic mechanisms and vet potential disease-modifying therapies.


Subject(s)
Corpus Striatum/metabolism , Substantia Nigra/metabolism , Synucleinopathies/metabolism , alpha-Synuclein/metabolism , Animals , Corpus Striatum/pathology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Male , Rats , Rats, Inbred F344 , Substantia Nigra/pathology , Synucleinopathies/pathology
4.
NPJ Parkinsons Dis ; 10(1): 133, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030200

ABSTRACT

Although most cases of Parkinson's disease (PD) are sporadic, mutations in over 20 genes are known to cause heritable forms of the disease. Recessive loss-of-function mutations in ATP13A2, a lysosomal transmembrane P5B-type ATPase and polyamine exporter, can cause early-onset familial PD. Familial ATP13A2 mutations are also linked to related neurodegenerative diseases, including Kufor-Rakeb syndrome, hereditary spastic paraplegias, neuronal ceroid lipofuscinosis, and amyotrophic lateral sclerosis. Despite the severe effects of ATP13A2 mutations in humans, ATP13A2 knockout (KO) mice fail to exhibit neurodegeneration even at advanced ages, making it challenging to study the neuropathological effects of ATP13A2 loss in vivo. Germline deletion of ATP13A2 in rodents may trigger the upregulation of compensatory pathways during embryonic development that mask the full neurotoxic effects of ATP13A2 loss in the brain. To explore this idea, we selectively deleted ATP13A2 in the adult mouse brain by the unilateral delivery of an AAV-Cre vector into the substantia nigra of young adult mice carrying conditional loxP-flanked ATP13A2 KO alleles. We observe a progressive loss of striatal dopaminergic nerve terminals at 3 and 10 months after AAV-Cre delivery. Cre-injected mice also exhibit robust dopaminergic neuronal degeneration in the substantia nigra at 10 months. Adult-onset ATP13A2 KO also recreates many of the phenotypes observed in aged germline ATP13A2 KO mice, including lysosomal abnormalities, p62-positive inclusions, and neuroinflammation. Our study demonstrates that the adult-onset homozygous deletion of ATP13A2 in the nigrostriatal pathway produces robust and progressive dopaminergic neurodegeneration that serves as a useful in vivo model of ATP13A2-related neurodegenerative diseases.

5.
Mol Neurodegener ; 18(1): 51, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542299

ABSTRACT

BACKGROUND: Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant Parkinson's disease (PD), with a single missense mutation (Asp620Asn, D620N) known to segregate with disease in families with PD. The VPS35 gene encodes a core component of the retromer complex, involved in the endosomal sorting and recycling of transmembrane cargo proteins. VPS35-linked PD is clinically indistinguishable from sporadic PD, although it is not yet known whether VPS35-PD brains exhibit α-synuclein-positive brainstem Lewy pathology that is characteristic of sporadic cases. Prior studies have suggested a functional interaction between VPS35 and the PD-linked gene product α-synuclein in lower organisms, where VPS35 deletion enhances α-synuclein-induced toxicity. In mice, VPS35 overexpression is reported to rescue hippocampal neuronal loss in human α-synuclein transgenic mice, potentially suggesting a retromer deficiency in these mice. METHODS: Here, we employ multiple well-established genetic rodent models to explore a functional or pathological interaction between VPS35 and α-synuclein in vivo. RESULTS: We find that endogenous α-synuclein is dispensable for nigrostriatal pathway dopaminergic neurodegeneration induced by the viral-mediated delivery of human D620N VPS35 in mice, suggesting that α-synuclein does not operate downstream of VPS35. We next evaluated retromer levels in affected brain regions from human A53T-α-synuclein transgenic mice, but find normal levels of the core subunits VPS35, VPS26 or VPS29. We further find that heterozygous VPS35 deletion fails to alter the lethal neurodegenerative phenotype of these A53T-α-synuclein transgenic mice, suggesting the absence of retromer deficiency in this PD model. Finally, we explored the neuroprotective capacity of increasing VPS35 expression in a viral-based human wild-type α-synuclein rat model of PD. However, we find that the overexpression of wild-type VPS35 is not sufficient for protection against α-synuclein-induced nigral dopaminergic neurodegeneration, α-synuclein pathology and reactive gliosis. CONCLUSION: Collectively, our data suggest a limited interaction of VPS35 and α-synuclein in neurodegenerative models of PD, and do not provide support for their interaction within a common pathophysiological pathway.


Subject(s)
Parkinson Disease , Animals , Humans , Mice , Rats , alpha-Synuclein/metabolism , Membrane Proteins/metabolism , Mice, Transgenic , Parkinson Disease/metabolism , Protein Transport , Rodentia/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
6.
Eur J Neurosci ; 31(3): 478-90, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20105237

ABSTRACT

Dopamine deficiency associated with Parkinson's disease (PD) results in numerous changes in striatal transmitter function and neuron morphology. Specifically, there is marked atrophy of dendrites and dendritic spines on striatal medium spiny neurons (MSN), primary targets of inputs from nigral dopamine and cortical glutamate neurons, in advanced PD and rodent models of severe dopamine depletion. Dendritic spine loss occurs via dysregulation of intraspine Cav1.3 L-type Ca(2+)channels and can be prevented, in animal models, by administration of the calcium channel antagonist, nimodipine. The impact of MSN dendritic spine loss in the parkinsonian striatum on dopamine neuron graft therapy remains unexamined. Using unilaterally parkinsonian Sprague-Dawley rats, we tested the hypothesis that MSN dendritic spine preservation through administration of nimodipine would result in improved therapeutic benefit and diminished graft-induced behavioral abnormalities in rats grafted with embryonic ventral midbrain cells. Analysis of rotational asymmetry and spontaneous forelimb use in the cylinder task found no significant effect of dendritic spine preservation in grafted rats. However, analyses of vibrissae-induced forelimb use, levodopa-induced dyskinesias and graft-induced dyskinesias showed significant improvement in rats with dopamine grafts associated with preserved striatal dendritic spine density. Nimodipine treatment in this model did not impact dopamine graft survival but allowed for increased graft reinnervation of striatum. Taken together, these results demonstrate that even with grafting suboptimal numbers of cells, maintaining normal spine density on target MSNs results in overall superior behavioral efficacy of dopamine grafts.


Subject(s)
Cell Transplantation , Dendritic Spines/metabolism , Dopamine/metabolism , Dyskinesias/physiopathology , Neurons/metabolism , Parkinson Disease , Animals , Antiparkinson Agents/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Dendritic Spines/drug effects , Dendritic Spines/pathology , Dendritic Spines/ultrastructure , Disease Models, Animal , Dyskinesias/drug therapy , Female , Levodopa/pharmacology , Male , Neurons/drug effects , Neurons/ultrastructure , Nimodipine/pharmacology , Nimodipine/therapeutic use , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Pregnancy , Rats , Rats, Sprague-Dawley , Vibrissae/metabolism
7.
Acta Neuropathol Commun ; 7(1): 41, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30871620

ABSTRACT

Misfolded alpha-synuclein (αSyn) is a major constituent of Lewy bodies and Lewy neurites, which are pathological hallmarks of Parkinson's disease (PD). The contribution of αSyn to PD is well established, but the detailed mechanism remains obscure. Using a model in which αSyn aggregation in primary neurons was seeded by exogenously added, preformed αSyn amyloid fibrils (PFF), we found that a majority of pathogenic αSyn (indicated by serine 129 phosphorylated αSyn, ps-αSyn) was membrane-bound and associated with mitochondria. In contrast, only a minuscule amount of physiological αSyn was mitochondrial bound. In vitro, αSyn PFF displayed a stronger binding to purified mitochondria than did αSyn monomer, revealing a preferential mitochondria binding by aggregated αSyn. This selective mitochondrial ps-αSyn accumulation was confirmed in other neuronal and animal αSyn aggregation models that do not require exogenously added PFF and, more importantly, in postmortem brain tissues of patients suffering from PD and other neurodegenerative diseases with αSyn aggregation (α-synucleinopathies). We also showed that the mitochondrial ps-αSyn accumulation was accompanied by defects in cellular respiration in primary neurons, suggesting a link to mitochondrial dysfunction. Together, our results show that, contrary to physiological αSyn, pathogenic αSyn aggregates preferentially bind to mitochondria, indicating mitochondrial dysfunction as the common downstream mechanism for α-synucleinopathies. Our findings suggest a plausible model explaining the formation and the peculiar morphology of Lewy body and reveal that disrupting the interaction between ps-αSyn and the mitochondria is a therapeutic target for α-synucleinopathies.


Subject(s)
Mitochondria/metabolism , Mitochondria/pathology , Protein Aggregates/physiology , alpha-Synuclein/metabolism , Animals , Cell Respiration/physiology , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Binding/physiology , Rats , Rats, Sprague-Dawley
8.
J Neurosci Methods ; 166(1): 13-9, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17706789

ABSTRACT

The poor survival rate (5-20%) of grafted embryonic dopamine (DA) neurons is one of the primary factors preventing cell replacement from becoming a viable treatment for Parkinson's disease. Previous studies have demonstrated that graft volume impacts grafted DA neuron survival, indicating that transplant parameters influence survival rates. However, the effects of mesencephalic cell concentration on grafted DA neuron survival have not been investigated. The current study compares the survival rates of DA neurons in grafts of varying concentrations. Mesencephalic cell suspensions derived from E14 Fisher 344 rat pups were concentrated to 25,000, 50,000, 100,000 and 200,000 cells/microl and transplanted into two 0.5 microl sites in the 6-OHDA-denervated rat striatum. Animals were sacrificed 10 days and 6 weeks post-transplantation for histochemical analysis of striatal grafts. The absolute number of DA neurons per graft increased proportionally to the total number of cells transplanted. However, our results show that the 200,000 cells/microl group exhibited significantly higher survival rates (5.48+/-0.83%) compared to the 25,000 cells/microl (2.81+/-0.39%) and 50,000 cells/microl (3.36+/-0.51%) groups (p=0.02 and 0.03, respectively). Soma size of grafted DA neurons in the 200,000 cells/microl group was significantly larger than that of the 25,000 cells/microl (p<0.0001) and 50,000 cells/microl groups (p=0.004). In conclusion, increasing the concentration of mesencephalic cells prior to transplantation, augments the survival and functionality of grafted DA neurons. These data have the potential to identify optimal transplantation parameters that can be applied to procedures utilizing stem cells, neural progenitors, and primary mesencephalic cells.


Subject(s)
Brain Tissue Transplantation/methods , Dopamine/metabolism , Fetal Tissue Transplantation/methods , Mesencephalon/transplantation , Neurons/transplantation , Parkinson Disease/therapy , Tyrosine 3-Monooxygenase/metabolism , Animals , Brain Tissue Transplantation/standards , Cell Count , Cell Culture Techniques/methods , Cell Culture Techniques/standards , Cell Proliferation , Cell Survival/physiology , Cells, Cultured , Corpus Striatum/cytology , Corpus Striatum/physiopathology , Corpus Striatum/surgery , Denervation , Fetal Tissue Transplantation/standards , Immunohistochemistry , Male , Mesencephalon/cytology , Mesencephalon/embryology , Neurons/cytology , Neurons/metabolism , Oxidopamine , Rats , Rats, Inbred F344 , Stem Cell Transplantation/methods , Stem Cell Transplantation/standards , Substantia Nigra/cytology , Substantia Nigra/embryology , Substantia Nigra/transplantation
9.
J Neurosci Methods ; 213(2): 214-27, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23313849

ABSTRACT

In 1873 Camillo Golgi discovered a staining technique that allowed for the visualization of whole neurons within the brain, initially termed 'the black reaction' and is now known as Golgi impregnation. Despite the capricious nature of this method, Golgi impregnation remains a widely used method for whole neuron visualization and analysis of dendritic arborization and spine quantification. We describe a series of reliable, modified 'Golgi-Cox' impregnation methods that complement some existing methods and have several advantages over traditional whole brain 'Golgi' impregnation. First, these methods utilize 60-100µm thick brain sections, which allows for fast, reliable impregnation of neurons in rats (7-14 days) and non-human primates (NHP) (30 days) while avoiding the pitfalls of other 'rapid Golgi' techniques traditionally employed with thin sections. Second, these methods employ several common tissue fixatives, resulting in high quality neuron impregnation in brain sections from acrolein, glutaraldehyde, and paraformaldehyde perfused rats, and in glutaraldehyde perfused NHP brain tissue. Third, because thin sections are obtained on a vibratome prior to processing, alternate sections of brain tissue can be used for additional analyses such as immunohistochemistry or electron microscopy. This later advantage allows for comparison of, for example, dendrite morphology in sections adjacent to pertinent histochemical markers or ultrastructural components. Finally, we describe a method for simultaneous light microscopic visualization of both tyrosine hydroxylase immunohistochemistry and Golgi impregnation in the same tissue section. Thus, the methods described here allow for fast, high quality Golgi impregnation and conserve experimental subjects by allowing multiple analyses within an individual animal.


Subject(s)
Brain/ultrastructure , Neurons/ultrastructure , Staining and Labeling/methods , Tissue Fixation/methods , Animals , Macaca mulatta , Male , Microscopy, Immunoelectron , Rats , Rats, Sprague-Dawley
10.
J Parkinsons Dis ; 1(1): 123-36, 2011.
Article in English | MEDLINE | ID: mdl-22328911

ABSTRACT

The mechanisms underlying the effects of long-term deep brain stimulation of the subthalamic nucleus (STN DBS) as a therapy for Parkinson's disease (PD) remain poorly understood. The present study examined whether functionally effective, long-term STN DBS modulates glial cell line-derived neurotrophic factor (GDNF) and/or brain-derived neurotrophic factor (BDNF) in both unlesioned and unilateral 6-hydroxydopamine lesioned rats. Lesioned rats that received two weeks of continuous unilateral STN DBS exhibited significant improvements in parkinsonian motor behaviors in tests of forelimb akinesia and rearing activity. Unilateral STN DBS did not increase GDNF in the nigrostriatal system, primary motor cortex (M1), or hippocampus of unlesioned rats. In contrast, unilateral STN DBS increased BDNF protein 2-3 fold bilaterally in the nigrostriatal system with the location (substantia nigra vs. striatum) dependent upon lesion status. Further, BDNF protein was bilaterally increased in M1 cortex by as much as 2 fold regardless of lesion status. STN DBS did not impact cortical regions that receive less input from the STN. STN DBS also was associated with bilateral increases in BDNF mRNA in the substantia nigra (SN) and internal globus pallidus (GPi). The increase observed in GPi was completely blocked by pretreatment with 5-Methyl-10,11-dihydro-5 H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), suggesting that the activation of N-methyl-D-aspartate (NMDA) receptors was involved in this phenomenon. The upregulation of BDNF associated with long term STN DBS suggest that this therapy may exert pronounced and underappreciated effects on plasticity in the basal ganglia circuitry that may play a role in the symptomatic effects of this therapy as well as support the neuroprotective effect of stimulation documented in this rat model.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , Deep Brain Stimulation , Motor Cortex/metabolism , Parkinson Disease/therapy , Substantia Nigra/metabolism , Subthalamic Nucleus/physiology , Animals , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/physiology , Male , Neurotoxins/toxicity , Oxidopamine/toxicity , Parkinson Disease/etiology , Parkinson Disease/pathology , Psychomotor Performance/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL