Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmacopsychiatry ; 57(3): 115-132, 2024 May.
Article in English | MEDLINE | ID: mdl-38267003

ABSTRACT

The endocannabinoid system shows promise as a novel target for treating psychiatric conditions. Cannabidiol (CBD), a naturally occurring cannabinoid, has been investigated in several psychiatric conditions, with diverse effects and an excellent safety profile compared to standard treatments. Even though the body of evidence from randomised clinical trials is growing, it remains relatively limited in most indications. This review comprises a comprehensive literature search to identify clinical studies on the effects of CBD in psychiatric conditions. The literature search included case studies, case reports, observational studies, and RCTs published in English before July 27, 2023, excluding studies involving nabiximols or cannabis extracts containing CBD and ∆9-tetrahydrocannabinol. Completed studies were considered, and all authors independently assessed relevant publications.Of the 150 articles identified, 54 publications were included, covering the effects of CBD on healthy subjects and various psychiatric conditions, such as schizophrenia, substance use disorders (SUDs), anxiety, post-traumatic stress disorder (PTSD), and autism spectrum disorders. No clinical studies have been published for other potential indications, such as alcohol use disorder, borderline personality disorder, depression, dementia, and attention-deficit/hyperactivity disorder. This critical review highlights that CBD can potentially ameliorate certain psychiatric conditions, including schizophrenia, SUDs, and PTSD. However, more controlled studies and clinical trials, particularly investigating the mid- to long-term use of CBD, are required to conclusively establish its efficacy and safety in treating these conditions. The complex effects of CBD on neural activity patterns, likely by impacting the endocannabinoid system, warrant further research to reveal its therapeutic potential in psychiatry.


Subject(s)
Cannabidiol , Mental Disorders , Humans , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Mental Disorders/drug therapy
2.
Psychiatry Res ; 339: 116005, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38950483

ABSTRACT

Randomized clinical trials substantiate cannabidiol (CBD) as a next-generation antipsychotic, effective in alleviating positive and negative symptoms associated with psychosis, while minimising the adverse effects seen with established treatments. Although the mechanisms remain debated, CBD is known to induce drug-responsive changes in lipid-based retrograde neurotransmitters. Lipid aberrations are also frequently observed with antipsychotics, which may contribute to their efficacy or increase the risk of undesirables, including metabolic dysfunction, obesity and dyslipidaemia. Our study investigated CBD's impact following lipid responses triggered by interaction with second-generation antipsychotics (SGA) in a randomized phase I safety study. Untargeted mass spectrometry assessed the lipidomic profiles of human sera, collected from 38 healthy volunteers. Serum samples were obtained prior to commencement of any medication (t = 0), 3 days after consecutive administration of one of the five, placebo-controlled, treatment arms designed to achieve steady-state concentrations of each SGA (amisulpride, 150 mg/day; quetiapine, 300 mg/day; olanzapine 10 mg/day; risperidone, 3 mg/day), and after six successive days of SGA treatment combined with CBD (800 mg/day). Receiver operating characteristics (ROC) refined 3712 features to a putative list of 15 lipids significantly altered (AUC > 0.7), classified into sphingolipids (53 %), glycerolipids (27 %) and glycerophospholipids (20 %). Targeted mass spectrometry confirmed reduced sphingomyelin and ceramide levels with antipsychotics, which mapped along their catabolic pathway and were restored by CBD. These sphingolipids inversely correlated with body weight after olanzapine, quetiapine, and risperidone treatment, where CBD appears to have arrested or attenuated these effects. Herein, we propose CBD may alleviate aberrant sphingolipid metabolism and that further investigation into sphingolipids as markers for monitoring side effects of SGAs and efficacy of CBD is warranted.


Subject(s)
Antipsychotic Agents , Cannabidiol , Healthy Volunteers , Sphingolipids , Humans , Cannabidiol/pharmacology , Cannabidiol/administration & dosage , Antipsychotic Agents/pharmacology , Sphingolipids/metabolism , Sphingolipids/blood , Adult , Male , Female , Young Adult , Lipidomics , Middle Aged
3.
Sci Rep ; 14(1): 4375, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388524

ABSTRACT

The analysis of ceramide (Cer) and sphingomyelin (SM) lipid species using liquid chromatography-tandem mass spectrometry (LC-MS/MS) continues to present challenges as their precursor mass and fragmentation can correspond to multiple molecular arrangements. To address this constraint, we developed ReTimeML, a freeware that automates the expected retention times (RTs) for Cer and SM lipid profiles from complex chromatograms. ReTimeML works on the principle that LC-MS/MS experiments have pre-determined RTs from internal standards, calibrators or quality controls used throughout the analysis. Employed as reference RTs, ReTimeML subsequently extrapolates the RTs of unknowns using its machine-learned regression library of mass-to-charge (m/z) versus RT profiles, which does not require model retraining for adaptability on different LC-MS/MS pipelines. We validated ReTimeML RT estimations for various Cer and SM structures across different biologicals, tissues and LC-MS/MS setups, exhibiting a mean variance between 0.23 and 2.43% compared to user annotations. ReTimeML also aided the disambiguation of SM identities from isobar distributions in paired serum-cerebrospinal fluid from healthy volunteers, allowing us to identify a series of non-canonical SMs associated between the two biofluids comprised of a polyunsaturated structure that confers increased stability against catabolic clearance.


Subject(s)
Sphingolipids , Tandem Mass Spectrometry , Humans , Sphingolipids/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Ceramides/chemistry , Sphingomyelins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL