Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Alcohol Clin Exp Res ; 38(6): 1582-93, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24890118

ABSTRACT

BACKGROUND: The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol (EtOH)-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white(mini-w), a derivative of the endogenous gene white(w). Whether the mini-w transgenic marker or the endogenous w gene influences behavioral responses to acute EtOH exposure in flies has not been systematically investigated. METHODS: We manipulated mini-w and w expression via (i) transposons marked with mini-w, (ii) RNAi against mini-w and w, and (iii) a null allele of w. We assessed EtOH sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of EtOH) and an assay based on EtOH-induced sedation. RESULTS: In eRING assays, EtOH-induced impairment of climbing correlated inversely with expression of the mini-w marker from a series of transposon insertions. Additionally, flies harboring a null allele of w or flies with RNAi-mediated knockdown of mini-w were significantly more sensitive to EtOH in eRING assays than controls expressing endogenous w or the mini-w marker. In contrast, EtOH sensitivity and rapid tolerance measured in the EtOH sedation assay were not affected by decreased expression of mini-w or endogenous w in flies. CONCLUSIONS: EtOH sensitivity measured in the eRING assay is noticeably influenced by w and mini-w, making eRING problematic for studies on EtOH-related behavior in Drosophila using transgenes marked with mini-w. In contrast, the EtOH sensitivity assay described here is a suitable behavioral paradigm for studies on EtOH sensitivity and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-w.


Subject(s)
Ethanol/pharmacology , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Chloride Channels/drug effects , DNA Transposable Elements/genetics , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drug Tolerance/genetics
2.
J Vis Exp ; (98)2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25939022

ABSTRACT

Alcohol use disorder (AUD) is a serious health challenge. Despite a large hereditary component to AUD, few genes have been unambiguously implicated in their etiology. The fruit fly, Drosophila melanogaster, is a powerful model for exploring molecular-genetic mechanisms underlying alcohol-related behaviors and therefore holds great promise for identifying and understanding the function of genes that influence AUD. The use of the Drosophila model for these types of studies depends on the availability of assays that reliably measure behavioral responses to ethanol. This report describes an assay suitable for assessing ethanol sensitivity and rapid tolerance in flies. Ethanol sensitivity measured in this assay is influenced by the volume and concentration of ethanol used, a variety of previously reported genetic manipulations, and also the length of time the flies are housed without food immediately prior to testing. In contrast, ethanol sensitivity measured in this assay is not affected by the vigor of fly handling, sex of the flies, and supplementation of growth medium with antibiotics or live yeast. Three different methods for quantitating ethanol sensitivity are described, all leading to essentially indistinguishable ethanol sensitivity results. The scalable nature of this assay, combined with its overall simplicity to set-up and relatively low expense, make it suitable for small and large scale genetic analysis of ethanol sensitivity and rapid tolerance in Drosophila.


Subject(s)
Behavior, Animal/drug effects , Drosophila melanogaster/drug effects , Ethanol/pharmacology , Animals , Behavior, Animal/physiology , Drosophila melanogaster/genetics , Drug Tolerance/genetics , Humans , Hypnotics and Sedatives/pharmacology , Male
SELECTION OF CITATIONS
SEARCH DETAIL