Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
J Am Chem Soc ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847558

ABSTRACT

Redox-inactive metal ions are essential in modulating the reactivity of various oxygen-containing metal complexes and metalloenzymes, including photosystem II (PSII). The heart of this unique membrane-protein complex comprises the Mn4CaO5 cluster, in which the Ca2+ ion acts as a critical cofactor in the splitting of water in PSII. However, there is still a lack of studies involving Ca-based reactive oxygen species (ROS) systems, and the exact nature of the interaction between the Ca2+ center and ROS in PSII still generates intense debate. Here, harnessing a novel Ca-TEMPO complex supported by the ß-diketiminate ligand to control the activation of O2, we report the isolation and structural characterization of hitherto elusive Ca peroxides, a homometallic Ca hydroperoxide and a heterometallic Ca/K peroxide. Our studies indicate that the presence of K+ cations is a key factor controlling the outcome of the oxygenation reaction of the model Ca-TEMPO complex. Combining experimental observations with computational investigations, we also propose a mechanistic rationalization for the reaction outcomes. The designed approach demonstrates metal-TEMPO complexes as a versatile platform for O2 activation and advances the understanding of Ca/ROS systems.

2.
Small ; : e2309984, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497489

ABSTRACT

Among diverse chemical synthetic approaches to zinc oxide nanocrystals (ZnO NCs), ubiquitous inorganic sol-gel methodology proved crucial for advancements in ZnO-based nanoscience. Strikingly, unlike the exquisite level of control over morphology and size dispersity achieved in ZnO NC syntheses, the purity of the crystalline phase, as well as the understanding of the surface structure and the character of the inorganic-organic interface, have been limited to vague descriptors until very recently. Herein, ZnO NCs applying the standard sol-gel synthetic protocol are synthesized with zinc acetate and lithium hydroxide and tracked the integration of lithium (Li) cations into the interior and exterior of nanoparticles by combining various techniques, including advanced solid-state NMR methods. In contrast to common views, it is demonstrated that Li+ ions remain kinetically trapped in the inorganic core, enter into a shallow subsurface layer, and generate "swelling" of the surface and interface regions. Thus, this work enabled both the determination of the NCs' structural imperfections and an in-depth understanding of the unappreciated role of the Li+ ions in impacting the doping and the passivation of sol-gel-derived ZnO nanomaterials.

3.
Small ; : e2403685, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813722

ABSTRACT

Inherent features of metal halide perovskites are their softness, complex lattice dynamics, and phase transitions spectacularly tuning their structures and properties. While the structural transformations are well described and classified in 3D perovskites, their 1D analogs are much less understood. Herein, both temperature- and pressure-dependent structural evolutions of a 1D AcaPbI3 perovskitoid incorporating acetamidinium (Aca) cation are examined. The study reveals the existence of nine phases of δ-AcaPbI3, which present the most diverse polymorphic collection among known perovskite materials. Interestingly, temperature- and pressure-triggered phase transitions in the 1D perovskotoid exhibit fundamentally different natures: the thermal transformations are mainly associated with the collective translations of rigid polyanionic units and ordering/disordering dynamics of Aca cations, while the compression primarily affects inorganic polymer chains. Moreover, in the 1-D chains featuring the face-sharing connection mode of the PbI6 octahedra the Pb···Pb distances are significantly shortened compared to the corner-sharing 3D perovskite frameworks, hence operating in the van der Waals territory. Strikingly, a good correlation is found between the Pb···Pb distances and the pressure evolution of the bandgap values in the δ-AcaPbI3, indicating that in 1D perovskitoid structures, the contacts between Pb2+ ions are one of the critical parameters determining their properties.

4.
Chemistry ; : e202401968, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801170

ABSTRACT

Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.

5.
Inorg Chem ; 62(40): 16274-16279, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37712907

ABSTRACT

Among numerous catalysts in the ring-opening copolymerization of epoxides with carbon dioxide (CO2), zinc dicarboxylate complexes are the most common type, and in the family of metal-based homogeneous catalysts, zinc and magnesium complexes have attracted widespread attention. We report on the synthesis and structural characterization of a zinc-magnesium benzoate framework templated by the central hydroxide anion with µ3-κ2:κ2:κ2 coordination mode, [ZnMg2(µ3-OH)(O2CPh)5]n (n = 1 or 2). The resulting heterometallic system forms stable Lewis acid-base adducts with tetrahydrofuran (THF) and cyclohexene oxide (CHO), which crystallize as the hexanuclear zinc-magnesium hydroxide carboxylate cluster [ZnMg2(µ3-OH)(O2CPh)5(L)2]2 (L = THF or CHO). Their X-ray crystal structure analysis revealed that the Zn center prefers 4-fold coordination and the Mg centers demonstrated the ability to accommodate higher coordination numbers, and as a result, the heterocyclic molecules are exclusively bonded to 6-fold Mg atoms. The heteronuclear carboxylate aggregates appeared active in the copolymerization reaction at elevated temperatures to produce an alternating poly(cyclohexene carbonate).

6.
Chemistry ; 28(40): e202200620, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35416351

ABSTRACT

Paddlewheel-type binuclear complexes featuring metal-metal bonding have been the subject of widespread interest due to fundamental concern in their electronic structures and potential applications. Here, we explore the molecular and electronic structures of diiron(II,II) complexes with N,N'-diarylformamidinate ligands. While a paddlewheel-type diiron(II,II) complex with N,N'-diphenylformamidinate ligands (DPhF) exhibits the centrosymmetric [Fe2 (µ-DPhF)4 ] structure, a minor alteration in the ligand system, i. e., switching from phenyl to p-tolyl N-substituted formamidinate ligand (DTolF), resulted in the isolation of an unprecedented non-centrosymmetric [Fe(µ-DTolF)3 Fe(κ2 -DTolF)] complex. Both complexes were characterized using single-crystal X-ray diffraction, magnetic measurements, 57 Fe Mössbauer spectroscopy, and cyclic voltammetry along with high-level ab-initio calculations. The results provide a new view on a range of factors controlling the ground-state electronic configuration and structural diversity of homoleptic diiron(II,II) complexes. Model calculations determined that the Mayer bond orders for Fe-Fe interactions are significantly lower than 1 and equal to 0.15 and 0.28 for [Fe2 (µ-DPhF)4 ] and [Fe(µ-DTolF)3 Fe(κ2 -DTolF)], respectively.


Subject(s)
Electronics , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure , Spectroscopy, Mossbauer
7.
Inorg Chem ; 61(20): 7869-7877, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35536182

ABSTRACT

While zinc µ4-oxido-centered complexes are widely used as versatile precursors and building units of functional materials, the synthesis of their analogues based on other transition metals is highly underdeveloped. Herein, we present the first efficient systematic approach for the synthesis of homometallic [M4(µ4-O)L6]-type clusters incorporating divalent transition-metal centers, coated by bridging monoanionic organic ligands. As a proof of concept, we prepared a series of charge-neutral metal-oxido benzamidates, [M4(µ4-O) (NHCOPh)6] (M = Fe, Co, Zn), including iron(II) and cobalt(II) clusters not accessible before. The resulting complexes were characterized using elemental analysis, FTIR spectroscopy, magnetic measurements, and single-crystal X-ray diffraction. Detailed structural analysis showed interesting self-assembly of the tetrahedral clusters into 2D honeycomb-like supramolecular layers driven by hydrogen bonds in the proximal secondary coordination sphere. Moreover, we modeled the magnetic properties of new iron (II) and cobalt (II) clusters, which display a general tendency for antiferromagnetic coupling of the µ4-O/µ-benzamidate-bridged metal centers. The developed synthetic procedure is potentially easily extensible to other M(II)-oxido systems, which will likely pave the way to new oxido clusters with interesting optoelectronic and self-assembly properties and, as a result, will allow for the development of new functional materials not achievable before.

8.
Inorg Chem ; 61(5): 2499-2508, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35072458

ABSTRACT

While inherent complexation properties and propensity for self-organization of cyclodextrins (CDs) render them potentially promising scaffolds of magnetic materials, this research area is still at an embryonic stage. We report on the synthesis and structure characterization of a new sandwich-type complex, [(α-CD)2Co3Li6(H2O)9] (α-1), which represents a smaller analogue of the previously characterized [(γ-CD)2Co4Li8(H2O)12] (γ-1) cluster. A comprehensive structural analysis of α-1 and a careful reinvestigation of γ-1 reveal how the symmetry of CD ligands determines the molecular composition and supramolecular arrangements of Co/Li sandwich-type complexes. Furthermore, the first comparative studies of the magnetic properties in this type of system point to subtle differences in the magnetic behavior of both compounds. The sandwich-type complexes α-1 and γ-1 exhibit field-induced slow magnetic relaxation, defining a new family of magnetic materials with a pillared grid-like supramolecular structure composed of weakly interacting CoII centers forming an SMM.

9.
J Am Chem Soc ; 143(3): 1529-1538, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33442979

ABSTRACT

The use of layered perovskites is an important strategy to improve the stability of hybrid perovskite materials and their optoelectronic devices. However, tailoring their properties requires accurate structure determination at the atomic scale, which is a challenge for conventional diffraction-based techniques. We demonstrate the use of nuclear magnetic resonance (NMR) crystallography in determining the structure of layered hybrid perovskites for a mixed-spacer model composed of 2-phenylethylammonium (PEA+) and 2-(perfluorophenyl)ethylammonium (FEA+) moieties, revealing nanoscale phase segregation. Moreover, we illustrate the application of this structure in perovskite solar cells with power conversion efficiencies that exceed 21%, accompanied by enhanced operational stability.

10.
Chemistry ; 27(55): 13757-13764, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34297436

ABSTRACT

Understanding the factors governing the formation of supramolecular structures and phase transitions between various forms of molecular crystals is pivotal for developing dynamic, stimuli-responsive materials and polymorph-controlled syntheses. Here, we investigate the pressure-induced dynamic of both the intrinsic molecular structure and the supramolecular network of a predesigned polyhedral oxo-centered zinc cluster incorporating monoanionic N,N'-diphenylformamidinate and featuring N-bonded phenyl groups in close proximity to the primary coordination sphere. We demonstrate that the model oxo cluster is prone to undergoing pressure-induced conformational transformations of the secondary coordination sphere and simultaneous stepwise (initially every second polyhedral molecule undergoes the conformational transformations) and reversible transitions from an ambient phase α to high-pressure phases ß and γ, as single-crystal-to-single-crystal events. The observed phase transitions illustrate the key role of an interplay between the low-energy conformation perturbations and cooperative intra- and intermolecular noncovalent interactions.

11.
Chemistry ; 27(18): 5666-5674, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33184948

ABSTRACT

Simple RZnOR' alkoxides are among the first known organozinc compounds, and widespread interest in their multifaced chemistry has been driven by their fundamental significance and potential applications including various catalytic reactions. Nevertheless, their chemistry in solution and in the solid state remains both relatively poorly understood and a subject of constant debate. Herein, the synthesis and structural characterization of long-sought structural forms, a roof-like trimer [(tBuZn)3 (µ-OC(H)Ph2 )2 (µ3 -OC(H)Ph2 )] and a ladder-type tetramer [(PhZn)4 (µ-OC(H)Ph2 )2 (µ3 -OC(H)Ph2 )2 ], incorporating diphenylmethanolate as a model alkoxide ligand, are reported. Both novel aggregates are robust in the solid state and resistant towards mechanical force. By using 1 H NMR and diffusion-order spectroscopy, it is demonstrated that new RZnOR' alkoxides are kinetically labile in solution and readily undergo ligand scrambling, such as in the case of Schlenk equilibrium. The elucidated key structural issues, which have remained undiscovered for decades, significantly advance the chemistry of RZnOR' alkoxides and should support the rational design of zinc alkoxide-based applications.

12.
Chemistry ; 27(57): 14234-14239, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34346529

ABSTRACT

Alkylzinc aminoalcoholates have emerged as powerful catalysts in organic synthesis and polymerization processes. Despite extensive research, difficulties in the rational design of these catalytic systems and in-depth understanding of their modes of action have hitherto been encountered. Most of the major obstacles stem largely from the relatively limited knowledge of the structure-activity relationship of zinc catalysts. In fact, the key active species are often generated in situ via the protonolysis of the alkylzinc precursors, which precludes their isolation and detailed characterization. Herein, the effectiveness of the oxygenation over the classical protonolysis in the synthesis of zinc alkylperoxides stabilized by an aminoalcoholate ligand is demonstrated. The controlled oxygenation of a tert-butylzinc complex incorporating a pridinolum (prinol) ligand leads to well-defined a dinuclear adduct of a (prinol)ZnOOtBu moiety with the parent tBuZn(prinol) complex and a novel dimer [tBuOOZn(prinol)]2 with terminal alkylperoxide groups. The observed reaction outcomes strongly depend on the reaction conditions. Although sparse examples of heteroleptic adducts of the [RZn(L)]x [ROOZn(L)]y -type are known, the herein reported homoleptic [ROOZn(L)]x aggregate is unprecedented. Strikingly, comparative studies involving reactions between tBuZn(prinol) and tert-butylhydroperoxide or ethanol revealed that the respective seemingly simple zinc alkylperoxides, or zinc alkoxides, respectively, are not accessible via the classical alcoholysis. We believe that these game-changing results concerning multifaceted chemistry of organozinc aminoalcoholates should pave the way for more rational development of various Zn-based catalytic systems.

13.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885988

ABSTRACT

Introduction of photoactive building blocks into mixed-ligand coordination polymers appears to be a promising way to produce new advanced luminescent materials. However, rational design and self-assembly of the multi-component supramolecular systems is challenging from both a conceptual and synthetic perspective. Here, we report exploratory studies that investigate the potential of [Zn(q)2]2[tBuZn(OH)]2 complex (q = deprotonated 8-hydroxyquinoline) as an organozinc precursor as well as a mixed-ligand synthetic strategy for the preparation of new luminescent coordination polymers (CPs). As a result we present three new 2D mixed-ligand Zn(II)-quinolinate coordination polymers which are based on various zinc quinolinate secondary building units interconnected by two different organic linker types, i.e., deprotonated 4,4'-oxybisbenzoic acid (H2obc) as a flexible dicarboxylate linker and/or selected bipyridines (bipy). Remarkably, using the title organozinc precursors in a combination with H2obc and 4,4'-bipyridine, a novel molecular zinc quinolinate building unit, [Zn4(q)6(bipy)2(obc)2], was obtained which self-assembled into a chain-type hydrogen-bonded network. The application of the organometallic precursor allowed for its direct reaction with the selected ligands at ambient temperature, avoiding the use of both solvothermal conditions and additional base reagents. In turn, the reaction involving Zn(NO3)2, as a classical inorganic precursor, in a combination with H2obc and bipy led to a novel 1D coordination polymer [Zn2(q)2(NO3)2(bipy)]. While the presence of H2obc was essential for the formation of this coordination polymer, this ditopic linker was not incorporated into the isolated product, which indicates its templating behavior. The reported compounds were characterized by single-crystal and powder X-ray diffraction, elemental analysis as well as UV-Vis and photoluminescence spectroscopy.

14.
Acc Chem Res ; 52(11): 3233-3243, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31702124

ABSTRACT

Hybrid organic-inorganic metal halide perovskites (MHPs) have emerged as excellent absorber materials for next generation solar cells owing to their simple solution-processed synthesis and high efficiency. This breakthrough in photovoltaics along with an accompanying impact in light-emitting applications prompted a renaissance of interest in the broad family of MHPs. Notably, the optoelectronic properties and the photovoltaic parameters of MHPs are highly sensitive to the adopted synthetic strategy. The preparation of MHPs has commonly relied on solution-based methods requiring elevated temperatures for homogeneity of reaction mixtures. While the solution-based approach is relatively versatile, it faces challenges such as limitations in compositional engineering of MHPs or their long-term storage among others. Therefore, there is a continuous great challenge to develop efficient synthetic strategies affording various high-quality MHP materials for numerous technological optoelectronic applications. In the past decade, mechanochemistry has appeared as a green alternative to traditional synthesis. This solid-state, re-emerging efficient synthetic methodology mediated by direct absorption of mechanical energy is growing explosively across organic and inorganic chemistry and materials science. In this Account, we describe our shared interest in the productive use of mechanical force in chemistry of MHPs, as well as assembly of the respective solar cell devices. We highlight the milestones achieved by our groups along with the seminal contributions by other groups. In particular, we demonstrate that mechanochemistry efficiently allows the formation of various phase pure hybrid lead and lead-free halide perovskite compositions (called hereafter "mechanoperovskites"). The progress in solvent-free solid-state synthesis is greatly enhanced by the integration of advanced methods of solid-state analysis like powder X-ray diffraction (pXRD), solid-state nuclear magnetic resonance (ss-NMR) and UV-vis spectroscopies, and we aim to illustrate this ongoing integration through appropriate examples. Furthermore, we show that thin films based on mechanoperovskites have the advantage of providing a higher degree of control of the stoichiometry and higher reproducibility, stability, and material phase purity. The impact of using powdered mechanoperovskite as a precursor for thin film formation on the electrochemical and photovoltaic properties of the solar cells is also discussed. Finally, our view of current challenges and future directions in this emerging interdisciplinary area of research is provided.

15.
Inorg Chem ; 59(19): 13807-13811, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32806017

ABSTRACT

While aluminum alkyls are often considered to be exemplary compounds of main-group organometallics and an in-depth understanding of their multifaceted chemistry is continually vital, the controlled oxygenation of organoaluminum complexes still remains a largely undeveloped area. In the course of our systematic studies on the relationship between the Lewis acidity of metal centers and noncovalent interactions in the secondary coordination sphere, we report the oxygenation of dialkylaluminum complexes incorporating a pyrrole-ester ligand, as purposefully selected dormant Lewis acidic octet-compliant model compounds, and the isolation and characterization of a new, dimeric aluminum tert-butylperoxide and an unique example of an aluminum oxoethoxide cluster. Our studies provide a more in-depth look at the diversity and complexity of the oxygenation chemistry of aluminum alkyls.

16.
Inorg Chem ; 59(7): 4389-4396, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32186190

ABSTRACT

The layered 2D MOFs, owing to their enhanced flexibility and tunability, have recently emerged as a promising alternative to the 3D microporous MOFs in the quest for novel responsive functional materials. However, maintaining the simultaneous control over self-assembly of molecular building blocks as well as ordered stacking of MOF layers poses a significant synthetic challenge. We report on the controlled 2D MOF formation based on a case study of solvent-templated growth of a series of 2D Cu(II)-carboxylate MOFs varying in stacking modes and distances using a diffusion-controlled MOF deposition approach in various solvent mixtures. Moreover, we demonstrate the structural dynamics of the developed 2D MOFs involving both in-plane and out-of-plane movements of the individual 2D layers triggered by solvent exchange, which allowed for selective postsynthetic transformations between the developed 2D MOFs. We also investigated the gas adsorption properties of the developed MOFs, which demonstrates a remarkable crystal size effect on the N2 adsorption capacity using a model 2D MOF system.

17.
Phys Chem Chem Phys ; 22(20): 11467-11473, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32391544

ABSTRACT

Ion migration plays a significant role in the overall stability and power conversion efficiency of perovskite solar cells (PSCs). This process was found to be influenced by the compositional engineering of the A-site cation in the perovskite crystal structure. However, the effect of partial A-site cation substitution in a methylammonium lead iodide (MAPbI3) perovskite on the ion migration process and its activation energy is not fully understood. Here we study the effect of a guanidinium (GUA) cation on the ion transport dynamics in the single crystalline GUAxMA1-xPbI3 perovskite composition using temperature-dependent electrochemical impedance spectroscopy (EIS). We find that the small substitution of MA with GUA decreases the activation energy for iodide ion migration in comparison to pristine MAPbI3. The presence of a large GUA cation in the 3D perovskite structure induces lattice enlargement, which perturbs the atomic interactions within the perovskite lattice. Consequently, the GUAxMA1-xPbI3 crystal exhibits a higher degree of hysteresis during current-voltage (J-V) measurements than the single-crystalline MAPbI3 counterpart. Our results provide the fundamental understanding of hysteresis, which is commonly observed in GUA-based PSCs and a general protocol for in-depth electrical characterization of perovskite single crystals.

18.
Chemistry ; 25(62): 14072-14080, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31379036

ABSTRACT

The ability to utilize polluting gases in efficient metal-mediated transformations is one of the most pressing challenges of modern chemistry. Despite numerous studies on the insertion of SO2 into M-C bonds, the chemical reaction of SO2 with organozinc compounds remains little explored. To fill this gap, we report here the systematic study of the reaction of Et2 Zn towards SO2 as well as the influence of Lewis bases on the reaction course. Whereas the equimolar reaction provided a novel example of a structurally characterized organozinc ethylsulfinate compound of general formula [(EtSO2 )ZnEt]n , the utilization of an excess of SO2 led to the formation of the zinc(II) bis(ethylsulfinate) compound [(EtSO2 )2 Zn]n . Moreover, we have discovered that the presence of N-donor Lewis bases represents an efficient tool for the preparation of extended zinc ethylsulfinates, which in turn led to the formation of 1D [(EtSO2 ZnEt)2 (hmta)]n and 2D [((EtSO2 )2 Zn)2 (DABCO)]n ⋅solv (in which solv=THF or toluene, hmta= hexamethylenetetramine, and DABCO=1,4-diazabicyclo[2.2.2]octane) coordination polymers, respectively. The results of DFT calculations on the reactivity of SO2 towards selected Zn-C reactive species as well as the role of an N-donor Lewis base on the stabilization of the transition states complement the discussion.

19.
Chemistry ; 25(62): 14025, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31697003

ABSTRACT

Invited for the cover of this issue are the groups of Janusz Lewinski from Polish Academy of Sciences and Warsaw University of Technology. The image depicts how a zinc ethylsulfinate web can be woven by using diethylzinc and sulfur dioxide. Read the full text of the article at 10.1002/chem.201902733.

20.
Chemistry ; 25(10): 2503-2510, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30516292

ABSTRACT

Despite decades of extensive studies on the reactivity of magnesium alkyls towards O2 , the isolation and structural characterization of discrete products of these reactions still remains a challenge. Although the formation of the most frequently encountered magnesium alkoxides through unstable alkylperoxide intermediates has commonly been accepted, the latter species have been elusive for over 100 years. Probing the oxygenation of a seemingly simple well-defined neo-pentylmagnesium complex stabilized by a ß-diketiminate ligand, (dipp BDI)MgCH2 CMe3 , we report on the isolation and structure characterization of both a dimeric magnesium alkoxide [(dipp BDI)Mg(µ-OCH2 CMe3 )]2 and the first example of monomeric magnesium alkylperoxide [(dipp BDI)Mg(thf)OOCH2 CMe3 ] (dipp BDI=[(ArNCMe)2 CH]- and Ar=C6 H3 iPr2 -2,6). The formation of monomeric magnesium alkylperoxide demonstrates a crucial role of an additional Lewis base for stabilizing the most elusive oxygenation products likely due to increasing of the electron density on the metal centre. Moreover, the 1 H NMR studies at -80 °C revealed that the dissociation of a coordinated Lewis base from the solvated complex (dipp BDI)Mg(L)CH2 CMe3 (where L=thf or 4-methylpyridine) is likely not required prior to the effective attack of an O2 molecule on the metal centre and the four-coordinate alkylmagnesium complex reacts smoothly with O2 under these conditions. The results can be expected to aid future engineering of various organomagnesium/O2 -based reaction systems.

SELECTION OF CITATIONS
SEARCH DETAIL