Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neuron ; 111(22): 3604-3618.e11, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37657440

ABSTRACT

Myelination depends on the maintenance of oligodendrocytes that arise from oligodendrocyte precursor cells (OPCs). We show that OPC-specific proliferation, morphology, and BMAL1 are time-of-day dependent. Knockout of Bmal1 in mouse OPCs during development disrupts the expression of genes associated with circadian rhythms, proliferation, density, morphology, and migration, leading to changes in OPC dynamics in a spatiotemporal manner. Furthermore, these deficits translate into thinner myelin, dysregulated cognitive and motor functions, and sleep fragmentation. OPC-specific Bmal1 loss in adulthood does not alter OPC density at baseline but impairs the remyelination of a demyelinated lesion driven by changes in OPC morphology and migration. Lastly, we show that sleep fragmentation is associated with increased prevalence of the demyelinating disorder multiple sclerosis (MS), suggesting a link between MS and sleep that requires further investigation. These findings have broad mechanistic and therapeutic implications for brain disorders that include both myelin and sleep phenotypes.


Subject(s)
ARNTL Transcription Factors , Multiple Sclerosis , Mice , Animals , ARNTL Transcription Factors/genetics , Sleep Deprivation/metabolism , Mice, Knockout , Oligodendroglia/metabolism , Myelin Sheath/metabolism , Multiple Sclerosis/metabolism , Sleep/genetics , Cell Differentiation
2.
Curr Opin Neurobiol ; 75: 102571, 2022 08.
Article in English | MEDLINE | ID: mdl-35679808

ABSTRACT

Cold sensation is initiated in the periphery by a specialized population of cold-sensitive neurons, referred to as cold receptors, who transmit decreases in temperature with sub-degree resolution using a diverse assortment of ion channels and receptors. It is largely accepted that normal cold signaling is initiated through activation of transient receptor potential melastatin 8 (TRPM8) expressing neurons. Conversely, the mechanisms underlying cold-induced pain signaling are not as well defined. Interestingly, mounting evidence demonstrates functional interplay between cold signaling and other somatic sensations, such as itch and warmth; thus, cold-sensing pathways also engage in sensory crosstalk and population coding mechanisms. In this review, we will discuss recent advances in our understanding of cold sensation and address major gaps in knowledge that require more investigation.


Subject(s)
TRPM Cation Channels , Cold Temperature , Humans , Neurons/metabolism , Pain , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Thermosensing/physiology
3.
Elife ; 112022 Oct 24.
Article in English | MEDLINE | ID: mdl-36278870

ABSTRACT

The voltage-gated sodium channel (NaV), NaV1.1, is well-studied in the central nervous system; conversely, its contribution to peripheral sensory neuron function is more enigmatic. Here, we identify a new role for NaV1.1 in mammalian proprioception. RNAscope analysis and in vitro patch-clamp recordings in genetically identified mouse proprioceptors show ubiquitous channel expression and significant contributions to intrinsic excitability. Notably, genetic deletion of NaV1.1 in sensory neurons caused profound and visible motor coordination deficits in conditional knockout mice of both sexes, similar to conditional Piezo2-knockout animals, suggesting that this channel is a major contributor to sensory proprioceptive transmission. Ex vivo muscle afferent recordings from conditional knockout mice found that loss of NaV1.1 leads to inconsistent and unreliable proprioceptor firing characterized by action potential failures during static muscle stretch; conversely, afferent responses to dynamic vibrations were unaffected. This suggests that while a combination of Piezo2 and other NaV isoforms is sufficient to elicit activity in response to transient stimuli, NaV1.1 is required for transmission of receptor potentials generated during sustained muscle stretch. Impressively, recordings from afferents of heterozygous conditional knockout animals were similarly impaired, and heterozygous conditional knockout mice also exhibited motor behavioral deficits. Thus, NaV1.1 haploinsufficiency in sensory neurons impairs both proprioceptor function and motor behaviors. Importantly, human patients harboring NaV1.1 loss-of-function mutations often present with motor delays and ataxia; therefore, our data suggest that sensory neuron dysfunction contributes to the clinical manifestations of neurological disorders in which NaV1.1 function is compromised. Collectively, we present the first evidence that NaV1.1 is essential for mammalian proprioceptive signaling and behaviors.


Subject(s)
NAV1.1 Voltage-Gated Sodium Channel , Sensory Receptor Cells , Animals , Female , Humans , Male , Mice , Action Potentials , Mice, Knockout , Proprioception/physiology , Sensory Receptor Cells/physiology , NAV1.1 Voltage-Gated Sodium Channel/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL