Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Express ; 31(20): 33141-33149, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859101

ABSTRACT

AlxGa1-xAsySb1-y grown lattice-matched to InP has attracted significant research interest as a material for low noise, high sensitivity avalanche photodiodes (APDs) due to its very dissimilar electron and hole ionization coefficients, especially at low electric fields. All work reported to date has been on Al concentrations of x = 0.85 or higher. This work demonstrates that much lower excess noise (F = 2.4) at a very high multiplication of 90 can be obtained in thick Al0.75Ga0.25As0.56Sb0.44 grown on InP substrates. This is the lowest excess noise that has been reported in any III-V APD operating at room temperature. The impact ionization coefficients for both electrons and holes are determined over a wide electric field range (up to 650 kV/cm) from avalanche multiplication measurements undertaken on complementary p-i-n and n-i-p diode structures. While these ionization coefficients can fit the experimental multiplication over three orders of magnitude, the measured excess noise is significantly lower than that expected from the ß/α ratio and the conventional local McIntyre noise theory. These results are of importance not just for the design of APDs but other high field devices, such as transistors using this material.

2.
Sci Rep ; 13(1): 9936, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37336988

ABSTRACT

Al0.85Ga0.15As0.56Sb0.44 has recently attracted significant research interest as a material for 1550 nm low-noise short-wave infrared (SWIR) avalanche photodiodes (APDs) due to the very wide ratio between its electron and hole ionization coefficients. This work reports new experimental excess noise data for thick Al0.85Ga0.15As0.56Sb0.44 PIN and NIP structures, measuring low noise at significantly higher multiplication values than previously reported (F = 2.2 at M = 38). These results disagree with the classical McIntyre excess noise theory, which overestimates the expected noise based on the ionization coefficients reported for this alloy. Even the addition of 'dead space' effects cannot account for these discrepancies. The only way to explain the low excess noise observed is to conclude that the spatial probability distributions for impact ionization of electrons and holes in this material follows a Weibull-Fréchet distribution function even at relatively low electric-fields. Knowledge of the ionization coefficients alone is no longer sufficient to predict the excess noise properties of this material system and consequently the electric-field dependent electron and hole ionization probability distributions are extracted for this alloy.

SELECTION OF CITATIONS
SEARCH DETAIL