ABSTRACT
Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.
Subject(s)
Asthma , Respiratory Hypersensitivity , Mice , Animals , Interleukin-17 , Interleukin-13 , Disease Models, Animal , Asthma/pathology , Pyroglyphidae , AllergensABSTRACT
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Subject(s)
Cytokines , Hypersensitivity , Cytokines/metabolism , Humans , Interleukin-13/metabolism , Interleukin-4/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolismABSTRACT
Severe asthma is associated with the production of interleukin 17A (IL-17A). The exact role of IL-17A in severe asthma and the factors that drive its production are unknown. Here we demonstrate that IL-17A mediated severe airway hyperresponsiveness (AHR) in susceptible strains of mice by enhancing IL-13-driven responses. Mechanistically, we demonstrate that IL-17A and AHR were regulated by allergen-driven production of anaphylatoxins, as mouse strains deficient in complement factor 5 (C5) or the complement receptor C5aR mounted robust IL-17A responses, whereas mice deficient in C3aR had fewer IL-17-producing helper T cells (T(H)17 cells) and less AHR after allergen challenge. The opposing effects of C3a and C5a were mediated through their reciprocal regulation of IL-23 production. These data demonstrate a critical role for complement-mediated regulation of the IL-23-T(H)17 axis in severe asthma.
Subject(s)
Asthma/immunology , Complement C3a/immunology , Complement C5a/immunology , Interleukin-17/biosynthesis , Interleukin-23/immunology , Th2 Cells/immunology , Allergens/adverse effects , Anaphylatoxins/biosynthesis , Animals , Asthma/genetics , Complement Activation , Complement C3a/genetics , Complement C5a/genetics , Cytokines/biosynthesis , Genetic Predisposition to Disease , Interleukin-13/biosynthesis , Interleukin-17/genetics , Male , Mice , Mice, Inbred AKR , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Pyroglyphidae/immunology , Receptor, Anaphylatoxin C5a/genetics , Th2 Cells/metabolismABSTRACT
Posttraumatic stress disorder (PTSD) is a highly prevalent, debilitating mental health condition. A better understanding of contributory neurobiological mechanisms will lead to effective treatments, improving quality of life for patients. Given that not all trauma-exposed individuals develop PTSD, identification of pre-trauma susceptibility factors that can modulate posttraumatic outcomes is important. Recent clinical evidence supports a strong link between inflammatory conditions and PTSD. A particularly strong association has been reported between asthma and PTSD prevalence and severity. Unlike many other PTSD-comorbid inflammatory conditions, asthma often develops in children, sensitizing them to subsequent posttraumatic pathology throughout their lifetime. Currently, there is a significant need to understand the neurobiology, shared mechanisms, and inflammatory mediators that may contribute to comorbid asthma and PTSD. Here, we provide a translational perspective of asthma and PTSD risk and comorbidity, focusing on clinical associations, relevant rodent paradigms and potential mechanisms that may translate asthma-associated inflammation to PTSD development.
Subject(s)
Asthma , Stress Disorders, Post-Traumatic , Comorbidity , Humans , Prevalence , Quality of Life , Stress Disorders, Post-Traumatic/epidemiologyABSTRACT
BACKGROUND: Recent studies have demonstrated that Th2 responses have the ability to antagonize Th17 responses. In mouse models of allergic asthma, blockade of Th2-effector cytokines results in elaboration of Th17 responses and associated increases in pulmonary neutrophilia. While these can be controlled by simultaneous blockade of Th17-associated effector cytokines, clinical trials of anti-IL-17/IL-17RA blocking therapies have demonstrated increased of risk of bacterial and fungal infections. Identification of minimally effective doses of cytokine-blocking therapies with the goal of reducing the potential emergence of infection-related complications is a translationally relevant goal. OBJECTIVE: In the current report, we examine whether combined blockade of IL-13 and IL-17A, at individually sub-therapeutic levels, can limit the development of allergic asthma while sparing expression of IL-17A-associated anti-microbial effectors. METHODS: House dust mite was given intratracheally to A/J mice. Anti-IL-13 and anti-IL-17A antibodies were administered individually, or concomitantly at sub-therapeutic doses. Airway hyper-reactivity, lung inflammation, magnitude of Th2- and Th17-associated cytokine production and expression of IL-13- and IL-17A-induced genes in the lungs was assessed. RESULTS: Initial dosing studies identified sub-therapeutic levels of IL-13 and IL-17A blocking mAbs that have a limited effect on asthma parameters and do not impair responses to microbial products or infection. Subsequent studies demonstrated that combined sub-therapeutic dosing with IL-13 and IL-17A blocking mAbs resulted in significant improvement in airway hyperresponsiveness (AHR) and expression of IL-13-induced gene expression. Importantly, these doses neither exacerbated nor inhibited production of Th17-associated cytokines, or IL-17A-associated gene expression. CONCLUSION: This study suggests that combining blockade of individual Th2 and Th17 effector cytokines, even at individually sub-therapeutic levels, may be sufficient to limit disease development while preserving important anti-microbial pathways. Such a strategy may therefore have reduced potential for adverse events associated with blockade of these pathways.
Subject(s)
Antibodies, Blocking/pharmacology , Asthma/immunology , Interleukin-13/antagonists & inhibitors , Interleukin-17/antagonists & inhibitors , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Asthma/pathology , Cytokines/immunology , Disease Models, Animal , Interleukin-13/immunology , Interleukin-17/immunology , Mice , Pyroglyphidae/immunology , Th17 Cells/pathology , Th2 Cells/pathologyABSTRACT
BACKGROUND: Atopic status of the mother and maternal exposure to environmental factors are associated with increased asthma risk. Moreover, animal models demonstrate that exposure to allergens in strongly sensitized mothers influences offspring asthma development, suggesting that in utero exposures can influence offspring asthma. However, it is unclear whether maternal exposure to common human allergens such as house dust mite (HDM), in the absence of additional adjuvants, influences offspring asthma development. OBJECTIVE: We sought to determine whether maternal HDM exposure influences asthma development in offspring. METHODS: Pregnant female mice were exposed to PBS or HDM during pregnancy. Using offspring of PBS- or HDM-exposed mothers, the magnitude of HDM or Aspergillus fumigatus (AF) extract-induced airway hyperresponsiveness (AHR), airway inflammation, immunoglobulin production, TH2-associated cytokine synthesis, and pulmonary dendritic cell activity was assessed. RESULTS: Compared with offspring of PBS-exposed mothers, offspring of HDM-exposed mothers demonstrate increased AHR, airway inflammation, TH2 cytokine production, and immunoglobulin levels and a modest decrease in the phagocytic capacity of pulmonary macrophage populations following HDM exposure. Increased sensitivity to AF-induced airway disease was not observed. Offspring of HDM-exposed B-cell-deficient mothers also demonstrated increased HDM-induced AHR, suggesting that transfer of maternal immunoglobulins is not required. CONCLUSIONS: Our data demonstrate that maternal exposure to HDM during pregnancy increases asthma sensitivity in offspring in an HDM-specific manner, suggesting that vertical transmission of maternal immune responses may be involved. These findings have important implications for regulation of asthma risk, and suggest that exposure to HDM in the developed world may have underappreciated influences on the overall prevalence of allergic asthma.
Subject(s)
Asthma/immunology , Dendritic Cells/immunology , Lung/immunology , Prenatal Exposure Delayed Effects/immunology , Th2 Cells/immunology , Animals , Antigens, Dermatophagoides/immunology , Antigens, Fungal/immunology , Aspergillus fumigatus/immunology , Cells, Cultured , Cytokines/metabolism , Disease Susceptibility , Environmental Exposure/adverse effects , Female , Male , Maternal Exposure/adverse effects , Mice , Mice, Inbred Strains , Pregnancy , Pyroglyphidae/immunologyABSTRACT
BACKGROUND: Increased IL-17A production has been associated with more severe asthma; however, the mechanisms whereby IL-17A can contribute to IL-13-driven pathology in asthmatic patients remain unclear. OBJECTIVE: We sought to gain mechanistic insight into how IL-17A can influence IL-13-driven responses. METHODS: The effect of IL-17A on IL-13-induced airway hyperresponsiveness, gene expression, mucus hypersecretion, and airway inflammation was assessed by using in vivo models of IL-13-induced lung pathology and in vitro culture of murine fibroblast cell lines and primary fibroblasts and human epithelial cell lines or primary human epithelial cells exposed to IL-13, IL-17A, or both. RESULTS: Compared with mice given intratracheal IL-13 alone, those exposed to IL-13 and IL-17A had augmented airway hyperresponsiveness, mucus production, airway inflammation, and IL-13-induced gene expression. In vitro, IL-17A enhanced IL-13-induced gene expression in asthma-relevant murine and human cells. In contrast to the exacerbating influence of IL-17A on IL-13-induced responses, coexposure to IL-13 inhibited IL-17A-driven antimicrobial gene expression in vivo and in vitro. Mechanistically, in both primary human and murine cells, the IL-17A-driven increase in IL-13-induced gene expression was associated with enhanced IL-13-driven signal transducer and activator of transcription 6 activation. CONCLUSIONS: Our data suggest that IL-17A contributes to asthma pathophysiology by increasing the capacity of IL-13 to activate intracellular signaling pathways, such as signal transducer and activator of transcription 6. These data represent the first mechanistic explanation of how IL-17A can directly contribute to the pathogenesis of IL-13-driven pathology.
Subject(s)
Asthma/immunology , Fibroblasts/immunology , Interleukin-13/metabolism , Interleukin-17/metabolism , Pneumonia/immunology , STAT6 Transcription Factor/metabolism , Th2 Cells/immunology , Animals , Asthma/chemically induced , Cell Line , Cytokines/metabolism , Gene Expression Regulation , Humans , Interleukin-13 Receptor alpha2 Subunit/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Pneumonia/chemically induced , Receptors, Interleukin-17/genetics , STAT6 Transcription Factor/genetics , Signal TransductionABSTRACT
UNLABELLED: Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT: Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions.
Subject(s)
Homeostasis/immunology , Hyperalgesia/surgery , Inflammation/complications , Pain/etiology , Pain/immunology , Sympathectomy , Anesthetics, Local/pharmacology , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Ganglia, Spinal/cytology , Ganglia, Spinal/surgery , Homeostasis/drug effects , Homeostasis/physiology , Hyperalgesia/etiology , Inflammation/etiology , Lidocaine/pharmacology , Male , Membrane Potentials/drug effects , Pain Measurement , Pain Threshold , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Tyrosine 3-Monooxygenase/metabolismSubject(s)
Air Pollution , Asthma , Air Pollution/adverse effects , Child , Epithelial Cells , Humans , Interleukin-17 , NeutrophilsABSTRACT
Studies examining the role of PD-1 family members in allergic asthma have yielded conflicting results. Using a mouse model of allergic asthma, we demonstrate that blockade of PD-1/PD-L1 has distinct influences on different CD4(+) T-cell subsets. PD-1/PD-L1 blockade enhances airway hyperreactivity (AHR), not by altering the magnitude of the underlying Th2-type immune response, but by allowing the development of a concomitant Th17-type immune response. Supporting differential CD4(+) T-cell responsiveness to PD-1-mediated inhibition, naïve PD-1(-/-) mice displayed elevated Th1 and Th17 levels, but diminished Th2 cytokine levels, and ligation of PD-1 in WT cells limited cytokine production by in vitro polarized Th1 and Th17 cells, but slightly enhanced cytokine production by in vitro polarized Th2 cells. Furthermore, PD-1 ligation enhanced Th2 cytokine production by naïve T cells cultured under nonpolarizing conditions. These data demonstrate that different CD4(+) T-cell subsets respond differentially to PD-1 ligation and may explain some of the variable results observed in control of allergic asthma by the PD-1 family members. As the PD-1/PD-L1 axis limits asthma severity by constraining Th17 cell activity, this suggests that severe allergic asthma may be associated with a defective PD-1/PD-L1 regulatory axis in some individuals.
Subject(s)
Asthma/immunology , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/immunology , Th17 Cells/immunology , Animals , Antibodies, Monoclonal/pharmacology , Cell Differentiation/immunology , Cell Movement/immunology , Cells, Cultured , Cytokines/biosynthesis , Disease Models, Animal , Interleukin-12/blood , Lung/cytology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Ligand 2 Protein/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Pyroglyphidae/immunology , Spleen/cytology , T-Lymphocyte Subsets/immunology , Th1 Cells/cytology , Th1 Cells/immunology , Th17 Cells/cytology , Th2 Cells/cytology , Th2 Cells/immunologyABSTRACT
Parasitic helminths are a major cause of chronic human disease, affecting more than 3 billion people worldwide. Host protection against most parasitic helminths relies upon Type 2 cytokine production, but the mechanisms that regulate interleukin (IL) 4 and 13 production from CD4(+) T helper 2 cells (T(H)2) and innate lymphoid type 2 cells (ILC2s) remain incompletely understood. The epithelial cell-derived cytokines IL-25 and IL-33 promote Type 2 responses, but the extent of functional redundancy between these cytokines is unclear and whether Type 2 memory relies upon either IL-25 or IL-33 is unknown. Herein, we demonstrate a pivotal role for IL-33 in driving primary and anamnestic immunity against the rodent hookworm Nippostrongylus brasiliensis. IL-33-deficient mice have a selective defect in ILC2-derived IL-13 during both primary and secondary challenge infections but generate stronger canonical CD4(+) T helper 2 cells responses (IL-4, IgE, mast cells, and basophils) than WT controls. Lack of IL-13 production in IL-33-deficient mice impairs resistin-like molecule beta (RELMß) expression and eosinophil recruitment, which are two mechanisms that eliminate N. brasiliensis parasites from infected hosts. Thus, IL-33 is requisite for IL-13 but not IL-4-driven Type 2 responses during hookworm infection.
Subject(s)
Hookworm Infections/immunology , Interleukin-13/immunology , Interleukins/immunology , Nippostrongylus/immunology , Th2 Cells/immunology , Analysis of Variance , Animals , Eosinophils/immunology , Flow Cytometry , Hormones, Ectopic/immunology , Intercellular Signaling Peptides and Proteins , Interleukin-33 , Interleukins/deficiency , Mice , Real-Time Polymerase Chain ReactionABSTRACT
Intrauterine infection (chorioamnionitis) aggravates neonatal hypoxic-ischemic (HI) brain injury, but the mechanisms linking systemic inflammation to the CNS damage remain uncertain. Here we report evidence for brain influx of T-helper 17 (TH17)-like lymphocytes to coordinate neuroinflammatory responses in lipopolysaccharide (LPS)-sensitized HI injury in neonates. We found that both infants with histological chorioamnionitis and rat pups challenged by LPS/HI have elevated expression of the interleukin-23 (IL-23) receptor, a marker of early TH17 lymphocytes, in the peripheral blood mononuclear cells. Post-LPS/HI administration of FTY720 (fingolimod), a sphingosine-1-phosphate receptor agonist that blocks lymphocyte trafficking, mitigated the influx of leukocytes through the choroid plexus and acute induction of nuclear factor-κB signaling in the brain. Subsequently, the FTY720 treatment led to attenuated blood-brain barrier damage, fewer cluster of differentiation 4-positive, IL-17A-positive T-cells in the brain, less proinflammatory cytokine, and better preservation of growth and white matter functions. The FTY720 treatment also provided dose-dependent reduction of brain atrophy, rescuing >90% of LPS/HI-induced brain tissue loss. Interestingly, FTY720 neither opposed pure-HI brain injury nor directly inhibited microglia in both in vivo and in vitro models, highlighting its unique mechanism against inflammation-sensitized HI injury. Together, these results suggest that the dual hit of systemic inflammation and neonatal HI injury triggers early onset of the TH17/IL-17-mediated immunity, which causes severe brain destruction but responds remarkably to the therapeutic blockade of lymphocyte trafficking.
Subject(s)
Cell Movement/drug effects , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/prevention & control , Inflammation/prevention & control , Lymphocyte Activation/drug effects , Lymphocytes/drug effects , Propylene Glycols/pharmacology , Sphingosine/analogs & derivatives , Animals , Animals, Newborn , Atrophy/drug therapy , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Chorioamnionitis/drug therapy , Chorioamnionitis/metabolism , Cytokines/metabolism , Dose-Response Relationship, Drug , Female , Fingolimod Hydrochloride , Humans , Hypoxia-Ischemia, Brain/drug therapy , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Infant, Newborn , Lipopolysaccharides , Lymphocytes/cytology , NF-kappa B/metabolism , Pregnancy , Propylene Glycols/therapeutic use , Rats , Receptors, Interleukin/metabolism , Sphingosine/pharmacology , Sphingosine/therapeutic use , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , White Matter/drug effectsABSTRACT
Changes in microbiome (dysbiosis) contribute to severity of allergic asthma. Preexisting epidemiological studies in humans correlate perinatal dysbiosis with increased long-term asthma severity. However, these studies cannot discriminate between prenatal and postnatal effects of dysbiosis and suffer from a high variability of dysbiotic causes ranging from antibiotic treatment, delivery by caesarian section to early-life breastfeeding practices. Given that maternal antibiotic exposure in mice increases the risk of newborn bacterial pneumonia in offspring, we hypothesized that prenatal maternal antibiotic-induced dysbiosis induces long-term immunological effects in the offspring that also increase long-term asthma severity. Therefore, dams were exposed to antibiotics (gentamycin, ampicillin, vancomycin) from embryonic day 15 until birth. Six weeks later, asthma was induced in the offspring by repeated applications of house dust mite extract. Airway function, cytokine production, pulmonary cell composition and distribution were assessed. Our study revealed that prenatally induced dysbiosis in mice led to an increase in pulmonary Th17+ non-conventional T cells with limited functional effect on airway resistance, pro-asthmatic Th2/Th17 cytokine production, pulmonary localization and cell-cell contacts. These data indicate that dysbiosis-related immune-modulation with long-term effects on asthma development occurs to a lesser extent prenatally and will allow to focus future studies on more decisive postnatal timeframes.
Subject(s)
Asthma , Th2 Cells , Animals , Anti-Bacterial Agents , Cytokines , Dysbiosis , Female , Humans , Mice , PregnancyABSTRACT
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which leads to elevated levels of pro-inflammatory mediators and microbial products in the amniotic fluid, which come in contact with fetal lungs. Yet, fetal pulmonary immune responses to such exposure remain poorly characterized. To address this gap, we used our established HCA model, in which pregnant Rhesus macaques receive intraamniotic (IA) saline or LPS. IA LPS induced a potent and rapid myeloid cell response in fetal lungs, dominated by neutrophils and monocytes/macrophages. Infiltrating and resident myeloid cells exhibited transcriptional profiles consistent with exposure to TLR ligands, as well as cytokines, notably IL-1 and TNFα. Although simultaneous, in vivo blockade of IL-1 and TNFα signaling did not prevent the inflammatory cell recruitment, it blunted the lung overall inflammatory state reducing communication between, and activation of, infiltrating immune cells. Our data indicate that the fetal innate immune system can mount a rapid multi-faceted pulmonary immune response to in utero exposure to inflammation. These data provide mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlight therapeutic potential of inflammatory blockade in the fetus.
Subject(s)
Chorioamnionitis , Pneumonia , Premature Birth , Amniotic Fluid , Animals , Chorioamnionitis/pathology , Female , Humans , Inflammation , Interleukin-1 , Lipopolysaccharides , Lung , Macaca mulatta , Pregnancy , Premature Birth/pathology , Tumor Necrosis Factor-alphaABSTRACT
The role of natural CD4+CD25+ regulatory T (T reg) cells in the control of allergic asthma remains poorly understood. We explore the impact of T reg cell depletion on the allergic response in mice susceptible (A/J) or comparatively resistant (C3H) to the development of allergen-induced airway hyperresponsiveness (AHR). In C3H mice, anti-CD25-mediated T reg cell depletion before house dust mite treatment increased several features of the allergic diathesis (AHR, eosinophilia, and IgE), which was concomitant with elevated T helper type 2 (Th2) cytokine production. In similarly T reg cell-depleted A/J mice, we observed a moderate increase in airway eosinophilia but no effects on AHR, IgE levels, or Th2 cytokine synthesis. As our experiments suggested that T reg cell depletion in C3H mice before sensitization was sufficient to enhance the allergic phenotype, we characterized dendritic cells (DCs) in T reg cell-depleted C3H mice. T reg cell-depleted mice had increased numbers of pulmonary myeloid DCs with elevated expression of major histocompatibility complex class II, CD80, and CD86. Moreover, DCs from T reg cell-depleted mice demonstrated an increased capacity to stimulate T cell proliferation and Th2 cytokine production, which was concomitant with reduced IL-12 expression. These data suggest that resistance to allergen-driven AHR is mediated in part by CD4+CD25+ T reg cell suppression of DC activation and that the absence of this regulatory pathway contributes to susceptibility.
Subject(s)
Asthma/immunology , Dendritic Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antigens, CD/immunology , Asthma/pathology , Cell Proliferation/drug effects , Dendritic Cells/pathology , Eosinophilia/immunology , Eosinophilia/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunoglobulin E/immunology , Interleukin-12/immunology , Lung/immunology , Lung/pathology , Lymphocyte Depletion/methods , Mice , Mice, Inbred C3H , Signal Transduction/drug effects , Signal Transduction/immunology , Th2 Cells/immunology , Th2 Cells/pathologyABSTRACT
BACKGROUND: A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. METHODS: Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. RESULTS: Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass-stimulated wild type BMDCs were sufficient to induce AHR and allergic airway inflammation, while GC frass-stimulated PAR-2-deficient BMDC had attenuated responses. CONCLUSIONS: Together these data suggest an important role for allergen activation of PAR-2 on mDCs in mediating Th2/Th17 cytokine production and allergic airway responses.
Subject(s)
Dendritic Cells/pathology , Inflammation Mediators/physiology , Myeloid Cells/pathology , Receptor, PAR-2/physiology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology , Animals , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/pathology , Cells, Cultured , Cockroaches/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , Receptor, PAR-2/deficiency , Receptor, PAR-2/genetics , Respiratory Hypersensitivity/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/pathologyABSTRACT
The role of complement in the development of maladaptive immunity in experimental allergic asthma is unclear. In this study, we show that C3a receptor (C3aR)-deficient mice are protected from the development of Th2 immunity in a model of house dust mite-induced asthma. C5a receptor (C5aR)-targeting of C3aR-deficient mice during allergen sensitization not only reversed the protective effect but enhanced Th2 cytokine production, airway inflammation, and airway responsiveness, suggesting that the reduced allergic phenotype in C3aR-deficient mice results from protective C5aR signaling. In support of this view, C5aR expression in C3aR-deficient pulmonary dendritic cells (DCs) was increased when compared with wild-type DCs. Moreover, C5aR targeting regulated the frequency of pulmonary plasmacytoid DCs expressing costimulatory molecules B7-H1 and B7-DC. Ex vivo targeting of B7-H1 and B7-DC increased Th2 cytokine production from T cells of wild-type but not of C5aR-targeted mice, suggesting a protective role for C5a through regulation of B7 molecule expression on plasmacytoid DCs.
Subject(s)
Asthma/immunology , B7-1 Antigen/immunology , Complement C5a/immunology , Dendritic Cells/immunology , Membrane Glycoproteins/immunology , Peptides/immunology , Animals , B7-H1 Antigen , Mice , Mice, Inbred BALB C , Programmed Cell Death 1 Ligand 2 Protein , Receptor, Anaphylatoxin C5a/immunology , Receptors, Complement/immunology , Signal Transduction/immunology , Th2 Cells/immunologyABSTRACT
Chorioamnionitis, a potentially serious inflammatory complication of pregnancy, is associated with the development of an inflammatory milieu within the amniotic fluid surrounding the developing fetus. When chorioamnionitis occurs, the fetal lung finds itself in the unique position of being constantly exposed to the consequent inflammatory meditators and/or microbial products found in the amniotic fluid. This exposure results in significant changes to the fetal lung, such as increased leukocyte infiltration, altered cytokine, and surfactant production, and diminished alveolarization. These alterations can have potentially lasting impacts on lung development and function. However, studies to date have only begun to elucidate the association between such inflammatory exposures and lifelong consequences such as lung dysfunction. In this review, we discuss the pathogenesis of and fetal immune response to chorioamnionitis, detail the consequences of chorioamnionitis exposure on the developing fetal lung, highlighting the various animal models that have contributed to our current understanding and discuss the importance of fetal exposures in regard to the development of chronic respiratory disease. Finally, we focus on the clinical, basic, and therapeutic challenges in fetal inflammatory injury to the lung, and propose next steps and future directions to improve our therapeutic understanding of this important perinatal stress.