Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Chemistry ; 30(16): e202303733, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38055214

ABSTRACT

Transition metal oxide cathodes (TMOCs) such as LiNi0.8Mn0.1Co0.1O2 and LiMn1.5Ni0.5O4 have been widely employed in Li-ion batteries (LIBs) owing to superior operating voltages, high reversible capacities and relatively low cost. Nevertheless, despite significant advancements in practical application, TMOC-based LIBs face great challenges such as transition metal dissolution and volume expansion during cycling, which jeopardizes the future advance of high-voltage TMOCs. As a critical component of cathode, polymeric binder acts as a crucial part in maintaining the mechanical and ion/electron conductive integrity between active particles, carbon additives, and the aluminum collector, hence minimizing cathode pulverization during battery cycling. Moreover, Polymeric binder with specialized functions is thought to offer a new solution to enhancing the electrochemical stability of the TMOCs. Therefore, this review aims at providing a comprehensive summary of the ideal requirements, design strategies and recent progress of polymeric binders for TMOCs. Future design perspectives and promising research technologies for advanced binders for high-voltage TMOCs are introduced.

2.
Stem Cells ; 40(7): 691-703, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35429397

ABSTRACT

Lung maturation is not limited to proper structural development but also includes differentiation and functionality of various highly specialized alveolar cell types. Alveolar type 1 (AT1s) cells occupy nearly 95% of the alveolar surface and are critical for establishing efficient gas exchange in the mature lung. AT1 cells arise from progenitors specified during the embryonic stage as well as alveolar epithelial progenitors expressing surfactant protein C (Sftpcpos cells) during postnatal and adult stages. Previously, we found that Wnt5a, a non-canonical Wnt ligand, is required for differentiation of AT1 cells during the saccular phase of lung development. To further investigate the role of Wnt5a in AT1 cell differentiation, we generated and characterized a conditional Wnt5a gain-of-function mouse model. Neonatal Wnt5a gain-of-function disrupted alveologenesis through inhibition of cell proliferation. In this setting Wnt5a downregulated ß-catenin-dependent canonical Wnt signaling, repressed AT2 (anti-AT2) and promoted AT1 (pro-AT1) lineage-specific gene expression. In addition, we identified 2 subpopulations of Sftpchigh and Sftpclow alveolar epithelial cells. In Sftpclow cells, Wnt5a exhibits pro-AT1 and anti-AT2 effects, concurrent with inhibition of canonical Wnt signaling. Interestingly, in the Sftpchigh subpopulation, although increasing AT1 lineage-specific gene expression, Wnt5a gain-of-function did not change AT2 gene expression, nor inhibit canonical Wnt signaling. Using primary epithelial cells isolated from human fetal lungs, we demonstrate that this property of Wnt5a is evolutionarily conserved. Wnt5a therefore serves as a selective regulator that ensures proper AT1/AT2 balance in the developing lung.


Subject(s)
Alveolar Epithelial Cells , Wnt Signaling Pathway , Alveolar Epithelial Cells/metabolism , Animals , Cell Differentiation/genetics , Epithelial Cells/metabolism , Gene Expression , Humans , Infant, Newborn , Mice , Wnt Signaling Pathway/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
3.
Development ; 146(15)2019 08 09.
Article in English | MEDLINE | ID: mdl-31331942

ABSTRACT

Postnatal alveolar formation is the most important and the least understood phase of lung development. Alveolar pathologies are prominent in neonatal and adult lung diseases. The mechanisms of alveologenesis remain largely unknown. We inactivated Pdgfra postnatally in secondary crest myofibroblasts (SCMF), a subpopulation of lung mesenchymal cells. Lack of Pdgfra arrested alveologenesis akin to bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. The transcriptome of mutant SCMF revealed 1808 altered genes encoding transcription factors, signaling and extracellular matrix molecules. Elastin mRNA was reduced, and its distribution was abnormal. Absence of Pdgfra disrupted expression of elastogenic genes, including members of the Lox, Fbn and Fbln families. Expression of EGF family members increased when Tgfb1 was repressed in mouse. Similar, but not identical, results were found in human BPD lung samples. In vitro, blocking PDGF signaling decreased elastogenic gene expression associated with increased Egf and decreased Tgfb family mRNAs. The effect was reversible by inhibiting EGF or activating TGFß signaling. These observations demonstrate the previously unappreciated postnatal role of PDGFA/PDGFRα in controlling elastogenic gene expression via a secondary tier of signaling networks composed of EGF and TGFß.


Subject(s)
EGF Family of Proteins/metabolism , Myofibroblasts/metabolism , Pulmonary Alveoli/embryology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Bronchopulmonary Dysplasia/pathology , Calcium-Binding Proteins/biosynthesis , Cell Differentiation/physiology , Cells, Cultured , Elastin/genetics , Extracellular Matrix Proteins/biosynthesis , Fibrillin-1/biosynthesis , Humans , Mice , Mice, Knockout , Protein-Lysine 6-Oxidase/biosynthesis , RNA, Messenger/genetics , Transforming Growth Factor beta1/biosynthesis
4.
Am J Respir Crit Care Med ; 201(2): 198-211, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31738079

ABSTRACT

Rationale: Alveolar epithelial cell (AEC) injury and dysregulated repair are implicated in the pathogenesis of pulmonary fibrosis. Endoplasmic reticulum (ER) stress in AEC has been observed in idiopathic pulmonary fibrosis (IPF), a disease of aging.Objectives: To investigate a causal role for ER stress in the pathogenesis of pulmonary fibrosis (PF) and therapeutic potential of ER stress inhibition in PF.Methods: The role of ER stress in AEC dysfunction and fibrosis was studied in mice with tamoxifen (Tmx)-inducible deletion of ER chaperone Grp78, a key regulator of ER homeostasis, in alveolar type II (AT2) cells, progenitors of distal lung epithelium, and in IPF lung slice cultures.Measurements and Main Results:Grp78 deletion caused weight loss, mortality, lung inflammation, and spatially heterogeneous fibrosis characterized by fibroblastic foci, hyperplastic AT2 cells, and increased susceptibility of old and male mice, all features of IPF. Fibrosis was more persistent in more severely injured Grp78 knockout (KO) mice. Grp78 KO AT2 cells showed evidence of ER stress, apoptosis, senescence, impaired progenitor capacity, and activation of TGF-ß (transforming growth factor-ß)/SMAD signaling. Glucose-regulated protein 78 is reduced in AT2 cells from old mice and patients with IPF, and ER stress inhibitor tauroursodeoxycholic acid ameliorates ER stress and fibrosis in Grp78 KO mouse and IPF lung slice cultures.Conclusions: These results support a causal role for ER stress and resulting epithelial dysfunction in PF and suggest ER stress as a potential mechanism linking aging to IPF. Modulation of ER stress and chaperone function may offer a promising therapeutic approach for pulmonary fibrosis.


Subject(s)
Alveolar Epithelial Cells/metabolism , Endoplasmic Reticulum Stress/genetics , Heat-Shock Proteins/genetics , Pulmonary Fibrosis/genetics , Stem Cells/metabolism , Age Factors , Alveolar Epithelial Cells/pathology , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/genetics , Cellular Senescence/genetics , Dasatinib/pharmacology , Endoplasmic Reticulum Chaperone BiP , Gene Knockout Techniques , Heat-Shock Proteins/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/drug effects , Membrane Glycoproteins/drug effects , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Quercetin/pharmacology , Quinolines/pharmacology , Smad Proteins/metabolism , Taurochenodeoxycholic Acid/pharmacology , Transcription Factor CHOP/drug effects , Transcription Factor CHOP/metabolism , Transforming Growth Factor beta/metabolism
5.
J Biol Chem ; 291(12): 6569-82, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26833564

ABSTRACT

Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of ß-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential ß-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific ß-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/ß-catenin but not CBP/ß-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/ß-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/ß-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/ß-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting ß-catenin to modulate adult progenitor cell behavior in disease.


Subject(s)
Adult Stem Cells/physiology , Cell Differentiation , E1A-Associated p300 Protein/physiology , Protein Kinase C/metabolism , Wnt Proteins/metabolism , beta Catenin/physiology , Alveolar Epithelial Cells/physiology , Animals , Aquaporin 5/genetics , Aquaporin 5/metabolism , Cell Line , Electric Impedance , Gene Expression , Mice , Mice, Knockout , Phosphorylation , Promoter Regions, Genetic , Protein Processing, Post-Translational , Rats , Wnt Signaling Pathway , Wnt-5a Protein
6.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L371-L391, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28062486

ABSTRACT

Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.


Subject(s)
Cell Membrane/pathology , Lung Diseases/pathology , Wound Healing , Animals , Humans , Lung Injury/pathology , Models, Biological , Signal Transduction
7.
BMC Biol ; 14: 19, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26984772

ABSTRACT

BACKGROUND: Epithelial-mesenchymal cross talk is centerpiece in the development of many branched organs, including the lungs. The embryonic lung mesoderm provides instructional information not only for lung architectural development, but also for patterning, commitment and differentiation of its many highly specialized cell types. The mesoderm also serves as a reservoir of progenitors for generation of differentiated mesenchymal cell types that include αSMA-expressing fibroblasts, lipofibroblasts, endothelial cells and others. Transforming Growth Factor ß (TGFß) is a key signaling pathway in epithelial-mesenchymal cross talk. Using a cre-loxP approach we have elucidated the role of the TGFß type I receptor tyrosine kinase, ALK5, in epithelial-mesenchymal cross talk during lung morphogenesis. RESULTS: Targeted early inactivation of Alk5 in mesodermal progenitors caused abnormal development and maturation of the lung that included reduced physical size of the sub-mesothelial mesoderm, an established source of specific mesodermal progenitors. Abrogation of mesodermal ALK5-mediated signaling also inhibited differentiation of cell populations in the epithelial and endothelial lineages. Importantly, Alk5 mutant lungs contained a reduced number of αSMA(pos) cells and correspondingly increased lipofibroblasts. Elucidation of the underlying mechanisms revealed that through direct and indirect modulation of target signaling pathways and transcription factors, including PDGFRα, PPARγ, PRRX1, and ZFP423, ALK5-mediated TGFß controls a process that regulates the commitment and differentiation of αSMA(pos) versus lipofibroblast cell populations during lung development. CONCLUSION: ALK5-mediated TGFß signaling controls an early pathway that regulates the commitment and differentiation of αSMA(pos) versus LIF cell lineages during lung development.


Subject(s)
Lung/cytology , Lung/embryology , Mesoderm/cytology , Mesoderm/embryology , Myofibroblasts/cytology , Protein Serine-Threonine Kinases/genetics , Receptors, Transforming Growth Factor beta/genetics , Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , DNA-Binding Proteins/genetics , Gene Deletion , Gene Expression Regulation, Developmental , Gene Targeting , Lung/abnormalities , Lung/metabolism , Mesoderm/abnormalities , Mesoderm/metabolism , Mice, Inbred C57BL , Muscle, Smooth/abnormalities , Muscle, Smooth/cytology , Muscle, Smooth/embryology , Muscle, Smooth/metabolism , Myofibroblasts/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Stem Cells/metabolism , Transcription Factors/genetics , Transforming Growth Factor beta/metabolism
8.
Am J Respir Cell Mol Biol ; 55(1): 135-49, 2016 07.
Article in English | MEDLINE | ID: mdl-26816051

ABSTRACT

Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, has been linked to endoplasmic reticulum (ER) stress. To investigate a causal role for ER stress in BPD pathogenesis, we generated conditional knockout (KO) mice (cGrp78(f/f)) with lung epithelial cell-specific KO of Grp78, a gene encoding the ER chaperone 78-kD glucose-regulated protein (GRP78), a master regulator of ER homeostasis and the unfolded protein response (UPR). Lung epithelial-specific Grp78 KO disrupted lung morphogenesis, causing developmental arrest, increased alveolar epithelial type II cell apoptosis, and decreased surfactant protein and type I cell marker expression in perinatal lungs. cGrp78(f/f) pups died immediately after birth, likely owing to respiratory distress. Importantly, Grp78 KO triggered UPR activation with marked induction of the proapoptotic transcription factor CCAAT/enhancer-binding proteins (C/EBP) homologous protein (CHOP). Increased expression of genes involved in oxidative stress and cell death and decreased expression of genes encoding antioxidant enzymes suggest a role for oxidative stress in alveolar epithelial cell (AEC) apoptosis. Increased Smad3 phosphorylation and expression of transforming growth factor-ß/Smad3 targets Cdkn1a (encoding p21) and Gadd45a suggest that interactions among the apoptotic arm of the UPR, oxidative stress, and transforming growth factor-ß/Smad signaling pathways contribute to Grp78 KO-induced AEC apoptosis and developmental arrest. Chemical chaperone Tauroursodeoxycholic acid reduced UPR activation and apoptosis in cGrp78(f/f) lungs cultured ex vivo, confirming a role for ER stress in observed AEC abnormalities. These results demonstrate a key role for GRP78 in AEC survival and gene expression during lung development through modulation of ER stress, and suggest the UPR as a potential therapeutic target in BPD.


Subject(s)
Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Endoplasmic Reticulum/metabolism , Heat-Shock Proteins/metabolism , Homeostasis , Alveolar Epithelial Cells/drug effects , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Homeostasis/drug effects , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Oxidative Stress/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Taurochenodeoxycholic Acid/pharmacology , Unfolded Protein Response/drug effects
9.
Dev Biol ; 408(1): 56-65, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26460096

ABSTRACT

Pten is a multifunctional tumor suppressor. Deletions and mutations in the Pten gene have been associated with multiple forms of human cancers. Pten is a central regulator of several signaling pathways that influences multiple cellular functions. One such function is in cell motility and migration, although the precise mechanism remains unknown. In this study, we deleted Pten in the embryonic lung epithelium using Gata5-cre mice. Absence of Pten blocked branching morphogenesis and ERK and AKT phosphorylation at E12.5. In an explant model, Pten(Δ/Δ) mesenchyme-free embryonic lung endoderm failed to branch. Inhibition of budding in Pten(Δ/Δ) explants was associated with major changes in cell migration, while cell proliferation was not affected. We further examined the role of ERK and AKT in branching morphogenesis by conditional, endodermal-specific mutants which blocked ERK or AKT phosphorylation. MEK(DM/+); Gata5-cre (blocking of ERK phosphorylation) lung showed more severe phenotype in branching morphogenesis. The inhibition of budding was also associated with disruption of cell migration. Thus, the mechanisms by which Pten is required for early endodermal morphogenesis may involve ERK, but not AKT, mediated cell migration.


Subject(s)
Endoderm/embryology , Endoderm/enzymology , Lung/embryology , MAP Kinase Signaling System , Morphogenesis , PTEN Phosphohydrolase/metabolism , Animals , Cell Movement , Epithelium/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , GATA5 Transcription Factor/metabolism , Gene Deletion , Integrases/metabolism , Mice , Models, Biological , Organ Specificity , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
10.
Development ; 140(18): 3731-42, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23924632

ABSTRACT

Localized Fgf10 expression in the distal mesenchyme adjacent to sites of lung bud formation has long been thought to drive stereotypic branching morphogenesis even though isolated lung epithelium branches in the presence of non-directional exogenous Fgf10 in Matrigel. Here, we show that lung agenesis in Fgf10 knockout mice can be rescued by ubiquitous overexpression of Fgf10, indicating that precisely localized Fgf10 expression is not required for lung branching morphogenesis in vivo. Fgf10 expression in the mesenchyme itself is regulated by Wnt signaling. Nevertheless, we found that during lung initiation simultaneous overexpression of Fgf10 is not sufficient to rescue the absence of primary lung field specification in embryos overexpressing Dkk1, a secreted inhibitor of Wnt signaling. However, after lung initiation, simultaneous overexpression of Fgf10 in lungs overexpressing Dkk1 is able to rescue defects in branching and proximal-distal differentiation. We also show that Fgf10 prevents the differentiation of distal epithelial progenitors into Sox2-expressing airway epithelial cells in part by activating epithelial ß-catenin signaling, which negatively regulates Sox2 expression. As such, these findings support a model in which the main function of Fgf10 during lung development is to regulate proximal-distal differentiation. As the lung buds grow out, proximal epithelial cells become further and further displaced from the distal source of Fgf10 and differentiate into bronchial epithelial cells. Interestingly, our data presented here show that once epithelial cells are committed to the Sox2-positive airway epithelial cell fate, Fgf10 prevents ciliated cell differentiation and promotes basal cell differentiation.


Subject(s)
Cell Differentiation , Epithelial Cells/pathology , Fibroblast Growth Factor 10/metabolism , Lung/embryology , Lung/metabolism , Morphogenesis , Stem Cells/pathology , Animals , Down-Regulation , Enzyme Activation , Epithelial Cells/metabolism , Fibroblast Growth Factor 10/deficiency , Intercellular Signaling Peptides and Proteins/metabolism , Limb Deformities, Congenital/pathology , Lung/abnormalities , Lung/pathology , Mice , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Proto-Oncogene Proteins c-akt/metabolism , Respiration , SOXB1 Transcription Factors/metabolism , Signal Transduction , Stem Cells/enzymology , Trachea/pathology , Wnt Proteins/metabolism , beta Catenin/metabolism
11.
Stem Cells ; 33(3): 999-1012, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25448080

ABSTRACT

Development of the mammalian lung is predicated on cross-communications between two highly interactive tissues, the endodermally derived epithelium and the mesodermally derived pulmonary mesenchyme. While much attention has been paid for the lung epithelium, the pulmonary mesenchyme, partly due to lack of specific tractable markers remains under-investigated. The lung mesenchyme is derived from the lateral plate mesoderm and is the principal recipient of Hedgehog (Hh) signaling, a morphogenetic network that regulates multiple aspects of embryonic development. Using the Hh-responsive Gli1-cre(ERT2) mouse line, we identified the mesodermal targets of Hh signaling at various time points during embryonic and postnatal lung development. Cell lineage analysis showed these cells serve as progenitors to contribute to multiple lineages of mesodermally derived differentiated cell types that include parenchymal or interstitial myofibroblasts, peribronchial and perivascular smooth muscle as well as rare populations of cells within the mesothelium. Most importantly, Gli1-cre(ERT2) identified the progenitors of secondary crest myofibroblasts, a hitherto intractable cell type that plays a key role in alveolar formation, a vital process about which little is currently known. Transcriptome analysis of Hh-targeted progenitor cells transitioning from the pseudoglandular to the saccular phase of lung development revealed important modulations of key signaling pathways. Among these, there was significant downregulation of canonical WNT signaling. Ectopic stabilization of ß-catenin via inactivation of Apc by Gli1-cre(ERT2) expanded the Hh-targeted progenitor pools, which caused the formation of fibroblastic masses within the lung parenchyma. The Gli1-cre(ERT2) mouse line represents a novel tool in the analysis of mesenchymal cell biology and alveolar formation during lung development.


Subject(s)
Lung/embryology , Mesoderm/cytology , Myofibroblasts/cytology , Stem Cells/cytology , Animals , Cell Differentiation/physiology , Female , Gene Expression Profiling , Lung/cytology , Mesoderm/metabolism , Mice , Myofibroblasts/metabolism , Pregnancy , Signal Transduction , Stem Cells/metabolism
12.
Dev Biol ; 378(1): 13-24, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23562608

ABSTRACT

Wnt signaling is critical for cell fate specification and cell differentiation in many organs, but its function in pulmonary neuroendocrine cell (PNEC) differentiation has not been fully addressed. In this study, we examined the role of canonical Wnt signaling by targeting the gene for Adenomatous Polyposis Coli (Apc), which controls Wnt signaling activity via mediating phosphorylation of beta-catenin (Ctnnb). Targeting the Apc gene in lung epithelial progenitors by Nkx2.1-cre stabilized Ctnnb and activated canonical Wnt signaling. Apc deficiency altered lung epithelial cell fate by inhibiting Clara and ciliated cell differentiation and activating Uchl1, a marker of neuroendocrine cells. Similar to PNEC in normal lung, Uchl1(positive) cells were innervated. In mice with targeted inactivation of Ctnnb by Nkx2.1-cre, PNEC differentiation was not interrupted. These indicate that, after lung primordium formation, Wnt signaling is not essential for PNEC differentiation; however, its over-activation promotes PNEC features. Interestingly, Nkx2.1 was extinguished in Apc deficient epithelial progenitors before activation of Uchl1. Examination of Nkx2.1 null lungs suggested that early deletion of Nkx2.1 inhibits PNEC differentiation, while late repression does not. Nkx2.1 was specifically inhibited in Apc deficient lungs but not in Ctnnb gain-of-function lungs indicating a functional difference between Apc deletion and Ctnnb stabilization, both of which activate Wnt signaling. Further analysis revealed that Apc deficiency led to increased TGF-beta signaling, which inhibited Nkx2.1 in cultured lung endodermal explants. In contrast, TGF-beta activity was not increased in Ctnnb gain-of-function lungs. Therefore, our studies revealed an important mechanism involving Apc and TGF-beta signaling in regulating the key transcriptional factor, Nkx2.1, for lung epithelial progenitor cell fate determination.


Subject(s)
Adenomatous Polyposis Coli Protein/physiology , Epithelial Cells/cytology , Lung/cytology , Nuclear Proteins/physiology , Transcription Factors/physiology , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Cell Lineage , Gene Deletion , Gene Expression Regulation, Developmental , Genes, APC , Lung/embryology , Mice , Models, Biological , Morphogenesis , Nuclear Proteins/genetics , RNA, Messenger/metabolism , Signal Transduction , Stem Cells/cytology , Thyroid Nuclear Factor 1 , Transcription Factors/genetics
13.
Am J Physiol Lung Cell Mol Physiol ; 306(4): L316-25, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24375794

ABSTRACT

Many signaling pathways are mediated by Shc adapter proteins that, in turn, are expressed as three isoforms with distinct functions. The p66(Shc) isoform antagonizes proliferation, regulates oxidative stress, and mediates apoptosis. It is highly expressed in the canalicular but not the later stages of mouse lung development, and its expression persists in bronchopulmonary dysplasia, a chronic disease associated with premature birth. These observations suggest that p66(Shc) has a developmental function. However, constitutive p66(Shc) deletion yields no morphological phenotype, and the structure of the Shc gene precludes its inducible deletion. To elucidate its function in lung development, we transfected p66(Shc) or nonsilencing small-interfering RNA (siRNA) into the epithelia of embryonic day 11 mouse lungs that were then cultured for 3 days and analyzed morphometrically. To assess cellular proliferation and epithelial differentiation, lung explants were immunostained and immunoblotted for p66(Shc), proliferating cell nuclear antigen (PCNA), the proximal airway differentiation antigens Clara cell 10-kDa protein (CC10) and thyroid transcription factor (TTF)-1, and the alveolar surfactant proteins (SP)-A, -B, and -C. Explants transfected with nonsilencing siRNA demonstrated specific epithelial uptake and normal morphological development relative to uninjected controls. In contrast, transfection with p66(Shc) siRNA significantly increased lumenal cross-sectional areas, decreased branching, and increased epithelial proliferation (P < 0.05 for all). Relative to controls, the expression of SP-B, SP-C, CC10, and TTF-1 was decreased by p66(Shc) knockdown. SP-A was not expressed in either control or treated lungs. These data suggest that p66(Shc) attenuates epithelial proliferation while promoting both distal and proximal epithelial maturation.


Subject(s)
Alveolar Epithelial Cells/physiology , Lung/embryology , Morphogenesis , Shc Signaling Adaptor Proteins/physiology , 3T3 Cells , Animals , Cell Differentiation , DNA-Binding Proteins/metabolism , Female , Gene Knockdown Techniques , Lung/cytology , Lung/metabolism , Mice , Proliferating Cell Nuclear Antigen/metabolism , Pulmonary Surfactant-Associated Protein B/metabolism , RNA, Small Interfering/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1 , Tissue Culture Techniques , Transcription Factors , Uteroglobin/metabolism
14.
Development ; 137(5): 825-33, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20147383

ABSTRACT

Clara cells, together with ciliated and pulmonary neuroendocrine cells, make up the epithelium of the bronchioles along the conducting airways. Clara cells are also known as progenitor or stem cells during lung regeneration after injury. The mechanisms of Clara cell differentiation are largely unknown. Transforming growth factor beta (TGFbeta)is a multifunctional molecule with roles in normal development and disease pathogenesis. In this study, we deleted the TGFbeta type I receptor Alk5 in the embryonic lung epithelium using Gata5-Cre mice. Absence of Alk5 blocked Clara cell differentiation but had no effect on ciliated or pulmonary neuroendocrine cells. Hairy/Enhancer of Split-1, which is expressed in Clara cell putative ;progenitors' was found to be a downstream target of Alk5 in vivo and in vitro. Loss of Alk5-mediated signaling also stimulated Pten gene expression and inhibited ERK phosphorylation in vivo. Using lung epithelial cells, we show that Alk5-regulated Hes1 expression is stimulated through Pten and the MEK/ERK and PI3K/AKT pathways. Thus, the signaling pathway by which TGFbeta/ALK5 regulates Clara cell differentiation may entail inhibition of Pten expression, which in turn activates ERK and AKT phosphorylation.


Subject(s)
Lung/embryology , Protein Serine-Threonine Kinases/physiology , Receptors, Transforming Growth Factor beta/physiology , Respiratory Mucosa/embryology , Animals , Cell Count , Cell Differentiation/genetics , Cells, Cultured , Embryo, Mammalian , Endoderm/metabolism , Endoderm/physiology , Gene Deletion , Humans , Lung/cytology , Lung/metabolism , Mice , Mice, Transgenic , Organ Specificity/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Signal Transduction , Stem Cells/metabolism , Stem Cells/physiology
15.
Stem Cells ; 30(5): 946-55, 2012 May.
Article in English | MEDLINE | ID: mdl-22331706

ABSTRACT

The airways of the mammalian lung are lined with highly specialized epithelial cell types that are the targets of airborne toxicants and injury. Notch signaling plays an important role in the ontogeny of airway epithelial cells, but its contributions to recruitment, expansion or differentiation of resident progenitor/stem cells, and repair and re-establishment of the normal composition of airway epithelium following injury have not been addressed. In this study, the role of a specific Notch receptor, Notch1, was investigated by targeted inactivation in the embryonic lung epithelium using the epithelial-specific Gata5-Cre driver line. Notch1-deficient mice are viable without discernible defects in pulmonary epithelial cell-fate determination and differentiation. However, in an experimental model of airway injury, activity of Notch1 is found to be required for normal repair of the airway epithelium. Absence of Notch1 reduced the ability of a population of cells distinguished by expression of PGP9.5, otherwise a marker of pulmonary neuroendocrine cells, which appears to serve as a reservoir for regeneration of Clara cells. Hairy/enhancer of split-5 (Hes5) and paired-box-containing gene 6 (Pax6) were found to be downstream targets of Notch1. Both Hes5 and Pax6 expressions were significantly increased in association with Clara cell regeneration in wild-type lungs. Ablation of Notch1 reduced Hes5 and Pax6 and inhibited airway epithelial repair. Thus, although dispensable in developmental ontogeny of airway epithelial cells, normal activity of Notch1 is required for repair of the airway epithelium. The signaling pathway by which Notch1 regulates the repair process includes stimulation of Hes5 and Pax6 gene expression.


Subject(s)
Lung Injury/metabolism , Receptor, Notch1/metabolism , Regeneration , Respiratory Mucosa/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Transcription Factors/genetics , Eye Proteins/biosynthesis , Eye Proteins/genetics , Gene Expression Regulation/genetics , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Lung Injury/genetics , Lung Injury/pathology , Mice , Mice, Knockout , PAX6 Transcription Factor , Paired Box Transcription Factors/biosynthesis , Paired Box Transcription Factors/genetics , Receptor, Notch1/genetics , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Respiratory Mucosa/injuries , Respiratory Mucosa/pathology , Ubiquitin Thiolesterase/biosynthesis , Ubiquitin Thiolesterase/genetics
16.
bioRxiv ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37905051

ABSTRACT

Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.

17.
Cell Rep ; 39(1): 110608, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385750

ABSTRACT

The lung alveolus is lined with alveolar type 1 (AT1) and type 2 (AT2) epithelial cells. During alveologenesis, increasing demand associated with expanding alveolar numbers is met by proliferating progenitor AT2s (pAT2). Little information exists regarding the identity of this population and their niche microenvironment. We show that during alveologenesis, Hedgehog-responsive PDGFRa(+) progenitors (also known as SCMFs) are a source of secreted trophic molecules that maintain a unique pAT2 population. SCMFs are in turn maintained by TGFß signaling. Compound inactivation of Alk5 TßR2 in SCMFs reduced their numbers and depleted the pAT2 pool without impacting differentiation of daughter cells. In lungs of preterm infants who died with bronchopulmonary dysplasia, PDGFRa is reduced and the number of proliferative AT2s is diminished, indicating that an evolutionarily conserved mechanism governs pAT2 behavior during alveologenesis. SCMFs are a transient cell population, active only during alveologenesis, making them a unique stage-specific niche mesodermal cell type in mammalian organs.


Subject(s)
Hedgehogs , Infant, Premature , Animals , Cell Differentiation/physiology , Epithelial Cells , Fibroblasts , Humans , Infant, Newborn , Lung , Organogenesis , Receptor Protein-Tyrosine Kinases/metabolism , Stem Cells/metabolism
18.
Cells ; 11(7)2022 03 26.
Article in English | MEDLINE | ID: mdl-35406686

ABSTRACT

NKX2.1 is a master regulator of lung morphogenesis and cell specification; however, interactions of NKX2.1 with various transcription factors to regulate cell-specific gene expression and cell fate in the distal lung remain incompletely understood. FOXO1 is a key regulator of stem/progenitor cell maintenance/differentiation in several tissues but its role in the regulation of lung alveolar epithelial progenitor homeostasis has not been evaluated. We identified a novel role for FOXO1 in alveolar epithelial cell (AEC) differentiation that results in the removal of NKX2.1 from surfactant gene promoters and the subsequent loss of surfactant expression in alveolar epithelial type I-like (AT1-like) cells. We found that the FOXO1 forkhead domain potentiates a loss of surfactant gene expression through an interaction with the NKX2.1 homeodomain, disrupting NKX2.1 binding to the SFTPC promoter. In addition, blocking PI-3K/AKT signaling reduces phosphorylated FOXO-1 (p-FOXO1), allowing accumulated nuclear FOXO1 to interact with NKX2.1 in differentiating AEC. Inhibiting AEC differentiation in vitro with keratinocyte growth factor (KGF) maintained an AT2 cell phenotype through increased PI3K/AKT-mediated FOXO1 phosphorylation, resulting in higher levels of surfactant expression. Together these results indicate that FOXO1 plays a central role in AEC differentiation by directly binding NKX2.1 and suggests an essential role for FOXO1 in mediating AEC homeostasis.


Subject(s)
Alveolar Epithelial Cells , Pulmonary Surfactants , Alveolar Epithelial Cells/metabolism , Epithelial Cells/metabolism , Fibroblast Growth Factor 7/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Surfactants/metabolism , Surface-Active Agents/metabolism
19.
Elife ; 112022 10 10.
Article in English | MEDLINE | ID: mdl-36214448

ABSTRACT

Lung development is precisely controlled by underlying gene regulatory networks (GRN). Disruption of genes in the network can interrupt normal development and cause diseases such as bronchopulmonary dysplasia (BPD) - a chronic lung disease in preterm infants with morbid and sometimes lethal consequences characterized by lung immaturity and reduced alveolarization. Here, we generated a transgenic mouse exhibiting a moderate severity BPD phenotype by blocking IGF1 signaling in secondary crest myofibroblasts (SCMF) at the onset of alveologenesis. Using approaches mirroring the construction of the model GRN in sea urchin's development, we constructed the IGF1 signaling network underlying alveologenesis using this mouse model that phenocopies BPD. The constructed GRN, consisting of 43 genes, provides a bird's eye view of how the genes downstream of IGF1 are regulatorily connected. The GRN also reveals a mechanistic interpretation of how the effects of IGF1 signaling are transduced within SCMF from its specification genes to its effector genes and then from SCMF to its neighboring alveolar epithelial cells with WNT5A and FGF10 signaling as the bridge. Consistently, blocking WNT5A signaling in mice phenocopies BPD as inferred by the network. A comparative study on human samples suggests that a GRN of similar components and wiring underlies human BPD. Our network view of alveologenesis is transforming our perspective to understand and treat BPD. This new perspective calls for the construction of the full signaling GRN underlying alveologenesis, upon which targeted therapies for this neonatal chronic lung disease can be viably developed.


Subject(s)
Bronchopulmonary Dysplasia , Infant , Humans , Mice , Infant, Newborn , Animals , Bronchopulmonary Dysplasia/genetics , Gene Regulatory Networks , Infant, Premature , Organogenesis , Disease Models, Animal , Lung , Animals, Newborn , Insulin-Like Growth Factor I/genetics
20.
Am J Respir Cell Mol Biol ; 44(6): 804-12, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20693404

ABSTRACT

Alveolar formation is hallmarked by the transition of distal lung saccules into gas exchange units through the emergence of secondary crests and an exponential increase in surface area. Several cell types are involved in this complex process, including families of epithelial cells that differentiate into alveolar type I and II cells. Subsets of cells expressing Clara cell secretory protein (CCSP) have been identified in both lung and bone marrow compartments, and are described as a progenitor/stem cell pool involved in airway regeneration and alveolar homeostasis. Whether these cells also participate in alveolar formation during postnatal development remains unknown. Based on their regenerative capacity, we asked whether these cells participate in alveogenesis. We used a previously described transgenic mouse model (CCSP-tk) in which Ganciclovir exposure selectively depletes all cells with CCSP promoter activity through intracellular generation of a toxic metabolite of thymidine kinase. Our results showed that Ganciclovir treatment in newborn CCtk mice depleted this cell population in lung airways and bone marrow, and was associated with alveolar hypoplasia and respiratory failure. Hypoplastic lungs had fewer alveolar type I and II cells, with impaired secondary crest formation and decreased vascular endothelial growth factor expression in distal airways. These findings are consistent with a model in which a unique population of cells with CCSP promoter activity that expresses vascular endothelial growth factor participates in alveolar development.


Subject(s)
Epithelial Cells/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , Pulmonary Alveoli/growth & development , Uteroglobin/genetics , Animals , Ganciclovir/pharmacology , Lung/metabolism , Mice , Mice, Transgenic , Naphthalenes/pharmacology , Stem Cells/cytology , Thymidine Kinase/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL