Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Lipids Health Dis ; 23(1): 180, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862993

ABSTRACT

BACKGROUND: The management of male infertility continues to encounter an array of challenges and constraints, necessitating an in-depth exploration of novel therapeutic targets to enhance its efficacy. As an eight-carbon medium-chain fatty acid, octanoic acid (OCA) shows promise for improving health, yet its impact on spermatogenesis remains inadequately researched. METHODS: Mass spectrometry was performed to determine the fatty acid content and screen for a pivotal lipid component in the serum of patients with severe spermatogenesis disorders. The sperm quality was examined, and histopathological analysis and biotin tracer tests were performed to assess spermatogenesis function and the integrity of the blood-testis barrier (BTB) in vivo. Cell-based in vitro experiments were carried out to investigate the effects of OCA administration on Sertoli cell dysfunction. This research aimed to elucidate the mechanism by which OCA may influence the function of Sertoli cells. RESULTS: A pronounced reduction in OCA content was observed in the serum of patients with severe spermatogenesis disorders, indicating that OCA deficiency is related to spermatogenic disorders. The protective effect of OCA on reproduction was tested in a mouse model of spermatogenic disorder induced by busulfan at a dose 30 mg/kg body weight (BW). The mice in the study were separated into distinct groups and administered varying amounts of OCA, specifically at doses of 32, 64, 128, and 256 mg/kg BW. After evaluating sperm parameters, the most effective dose was determined to be 32 mg/kg BW. In vivo experiments showed that treatment with OCA significantly improved sperm quality, testicular histopathology and BTB integrity, which were damaged by busulfan. Moreover, OCA intervention reduced busulfan-induced oxidative stress and autophagy in mouse testes. In vitro, OCA pretreatment (100 µM) significantly ameliorated Sertoli cell dysfunction by alleviating busulfan (800 µM)-induced oxidative stress and autophagy. Moreover, rapamycin (5 µM)-induced autophagy led to Sertoli cell barrier dysfunction, while OCA administration exerted a protective effect by alleviating autophagy. CONCLUSIONS: This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.


Subject(s)
Autophagy , Blood-Testis Barrier , Busulfan , Caprylates , Oxidative Stress , Sertoli Cells , Spermatogenesis , Male , Animals , Blood-Testis Barrier/drug effects , Blood-Testis Barrier/metabolism , Busulfan/adverse effects , Caprylates/pharmacology , Oxidative Stress/drug effects , Mice , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Humans , Spermatogenesis/drug effects , Autophagy/drug effects , Infertility, Male/drug therapy , Infertility, Male/chemically induced , Infertility, Male/pathology , Testis/drug effects , Testis/pathology , Testis/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Adult
2.
Cell Mol Life Sci ; 79(2): 114, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35103851

ABSTRACT

Sertoli cells are essential for spermatogenesis in the testicular seminiferous tubules by forming blood-testis barrier (BTB) and creating a unique microenvironment for spermatogenesis. Many lncRNAs have been reported to participate in spermatogenesis. However, the role of long noncoding RNAs (lncRNAs) in Sertoli cells has rarely been examined. Herein, we found that a high-fat diet (HFD) decreased sperm quality, impaired BTB integrity and resulted in accumulation of saturated fatty acids (SFAs), especially palmitic acid (PA), in mouse testes. PA decreased the expression of tight junction (TJ)-related proteins, increased permeability and decreased transepithelial electrical resistance (TER) in primary Sertoli cells and TM4 cells. Moreover, lncRNA Tug1 was found to be involved in PA-induced BTB disruption by RNA-seq. Tug1 depletion distinctly impaired the TJs of Sertoli cells and overexpression of Tug1 alleviated the disruption of BTB integrity induced by PA. Moreover, Ccl2 was found to be a downstream target of Tug1, and decreased TJ-related protein levels and TER and increased FITC-dextran permeability in vitro. Furthermore, the addition of Ccl2 damaged BTB integrity after overexpression of Tug1 in the presence of PA. Mechanistically, we found that Tug1 could directly bind to EZH2 and regulate H3K27me3 occupancy in the Ccl2 promoter region by RNA immunoprecipitation and chromatin immunoprecipitation assays. Our study revealed an important role of Tug1 in the BTB integrity of Sertoli cells and provided a new view of the role of lncRNAs in male infertility.


Subject(s)
Blood-Testis Barrier/metabolism , RNA, Long Noncoding/genetics , Seminiferous Tubules/blood supply , Sertoli Cells/metabolism , Spermatogenesis/genetics , Tight Junctions/genetics , Animals , Cells, Cultured , Chemokine CCL2/biosynthesis , Chemokine CCL2/genetics , Diet, High-Fat , Electric Impedance , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Infertility, Male/genetics , Male , Mice , Mice, Inbred ICR , Obesity/pathology , Palmitic Acid/analysis , Semen Analysis , Spermatogenesis/physiology
3.
J Transl Med ; 17(1): 355, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31665020

ABSTRACT

BACKGROUND: Exosomes are 50-150 nm endocytic vesicles secreted by almost all type of cells that carry bioactive molecules from host. These small vesicles are considered to be novel cross-talk circuits established by tumor cells and tumor microenvironment. Previous studies have shown certain biological influence of exosomal programmed cell-death ligand 1 (Exo-PD-L1) on immune suppression and dysfunction. The aim of the current study was to investigate the impact of Exo-PD-L1 and soluble PD-L1 (sPD-L1) on non-small cell lung cancer (NSCLC) and explore the concordance between Exo-PD-L1 and PD-L1 expression in matched tumor tissues in NSCLC patients. METHODS: 85 consecutive patients from April 2017 to December 2017 at General Hospital of Eastern Command Theatre who were primarily diagnosed with NSCLC and 27 healthy individuals were enrolled in this study. Two milliliters of whole blood samples were collected from each participant and further centrifuged. Exosomes were derived from serum using the commercial kit (Total Exosome Isolation Kit), which was further identified by Western blotting analysis (CD63/TSG101), transmission electron microscope analysis (TEM) and nanoparticle tracking analysis (NTA). Exosomes were next solubilized for Exo-PD-L1 detection by enzyme-linked immuno-sorbent assay (ELISA). PD-L1 expression in matched tissue were assessed by PD-L1 immunohistochemistry (IHC) (clone 28-8) assay. Tumor proportion score (TPS) ≥ 1% was deemed as "positive" in this study and TPS < 1% was deemed as "negative". Written informed consent were obtained before acquisition of all data and biological sample. Data were analyzed using SPSS 20.0 and Graphpad Prism 5 software. Chi square test was conducted to estimate the correlation between Exo-PD-L1 levels, sPD-L1 levels, PD-L1 IHC profiles and clinicopathological features. For all analysis, a two-sided p < 0.05 was considered significant statistically. RESULTS: Exo-PD-L1 levels were higher in NSCLC patients with advanced tumor stage, larger tumor size (> 2.5 cm) (p < 0.001), positive lymph node status (p < 0.05) and distant metastasis (p < 0.05). In contrast, sPD-L1 levels were not different between NSCLC patients and healthy donors, it was not correlated with any clinicopathologic features except for tumor size (> 2.5 cm) (p < 0.05). In addition, Exo-PD-L1 levels showed slight correlation with sPD-L1 levels (Spearman's correlation at r = 0.3, p = 0.0027) while no correlation with PD-L1 IHC profiles was detected. CONCLUSIONS: In conclusion, Exo-PD-L1, but not sPD-L1, was correlated with NSCLC disease progression, including tumor size, lymph node status, metastasis and TNM stage. However, Exo-PD-L1 was not associated with PD-L1 IHC status.


Subject(s)
B7-H1 Antigen/blood , Carcinoma, Non-Small-Cell Lung/blood , Lung Neoplasms/blood , Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Case-Control Studies , Cohort Studies , Exosomes/immunology , Female , Humans , Immunohistochemistry , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Middle Aged , Solubility , Translational Research, Biomedical , Tumor Microenvironment/immunology
4.
Biochem Biophys Res Commun ; 503(1): 38-44, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29859191

ABSTRACT

Bile acids receptor TGR5 and its agonist INT-777, which has been found to be involved in the NLRP3 inflammasome pathway, play an important role in inflammatory diseases. However, the role of INT-777 in acute pancreatitis (AP) has not been reported. In this present study, we found that TGR5 was expressed in pancreatic tissue and increased after AP onset induced by caerulein and further evaluated the impact of INT-777 on the severity of AP. The results showed that INT-777 could reduce the severity of AP in mice, which was manifested as decreased pancreatic tissue damage as well as the decrease of serum enzymes (amylase and lipase), pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and the expression of necrosis related proteins (RIP3 and p-MLKL). Furthermore, we found that INT-777 reduced the reactive oxygen species (ROS) production in pancreatic acinar cells and inhibited the activation of NLRP3 inflammasome pathway. In conclusion, our data showed that INT-777 could protect pancreatic acinar cell against necrosis and reduce the severity of AP, which may be mediated by inhibiting ROS/NLRP3 inflammasome pathway.


Subject(s)
Cholic Acids/pharmacology , Pancreatitis/prevention & control , Receptors, G-Protein-Coupled/agonists , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Ceruletide/toxicity , Disease Models, Animal , Inflammasomes/drug effects , Inflammasomes/metabolism , Male , Mice , Mice, Inbred ICR , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Necrosis , Pancreas, Exocrine/drug effects , Pancreas, Exocrine/metabolism , Pancreas, Exocrine/pathology , Pancreatitis/metabolism , Pancreatitis/pathology , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism
5.
Sensors (Basel) ; 18(8)2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30126096

ABSTRACT

Since remote sensing images are captured from the top of the target, such as from a satellite or plane platform, ship targets can be presented at any orientation. When detecting ship targets using horizontal bounding boxes, there will be background clutter in the box. This clutter makes it harder to detect the ship and find its precise location, especially when the targets are in close proximity or staying close to the shore. To solve these problems, this paper proposes a deep learning algorithm using a multiscale rotated bounding box to detect the ship target in a complex background and obtain the location and orientation information of the ship. When labeling the oriented targets, we use the five-parameter method to ensure that the box shape is maintained rectangular. The algorithm uses a pretrained deep network to extract features and produces two divided flow paths to output the result. One flow path predicts the target class, while the other predicts the location and angle information. In the training stage, we match the prior multiscale rotated bounding boxes to the ground-truth bounding boxes to obtain the positive sample information and use it to train the deep learning model. When matching the rotated bounding boxes, we narrow down the selection scope to reduce the amount of calculation. In the testing stage, we use the trained model to predict and obtain the final result after comparing with the score threshold and nonmaximum suppression post-processing. Experiments conducted on a remote sensing dataset show that the algorithm is robust in detecting ship targets under complex conditions, such as wave clutter background, target in close proximity, ship close to the shore, and multiscale varieties. Compared to other algorithms, our algorithm not only exhibits better performance in ship detection but also obtains the precise location and orientation information of the ship.

6.
Toxicol Lett ; 376: 1-12, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36642205

ABSTRACT

As a widespread environmental contaminant, short chain chlorinated paraffins (SCCPs) has attracted great attention. However, the toxicity of SCCPs on male reproductive system remains ambiguous. In this study, we treated mice with SCCPs by gavage and investigated the toxic effects of SCCPs on testis. According to the results, the sperm parameters of mice were significantly reduced after exposure to 1, 10, 100 mg/kg body mass per day SCCPs for 35 days. SCCPs resulted in disorderly arranged seminiferous epithelium and increased apoptotic cells in testes. Both in vivo and in vitro experiments indicated that the oxidative stress was induced after SCCPs exposure, and dysfunction of nuclear factor erythroid-related factor (NRF2) signaling pathway played a role in this process. Moreover, resveratrol, an NRF2 activator, could alleviate the damage of SCCPs onmale reproductive system. Our study indicated that oxidative stress is the key point for explaining the testicular toxicity caused by SCCPs, and NRF2 could be used as a potential target for clinical treatment to alleviate the reproductive toxicity induced by SCCPs.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Animals , Male , Mice , China , Environmental Monitoring/methods , Hydrocarbons, Chlorinated/toxicity , NF-E2-Related Factor 2/genetics , Paraffin/toxicity , Paraffin/analysis , Semen/chemistry , Testis , Oxidative Stress
7.
J Ovarian Res ; 16(1): 138, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37443082

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder that frequently exhibits low-grade inflammation, pro-oxidant activity, and gut dysbiosis. PCOS has become one of the leading causes of female infertility worldwide. Recently, omega-3 polyunsaturated fatty acids (PUFAs) have been proven to benefit metabolic disorders in PCOS patients. However, its roles in the regulation of metabolic and endocrinal balances in PCOS pathophysiology are not clear. In the present study, we aimed to explore how omega-3 PUFAs alleviate ovarian dysfunction and insulin resistance in mice with dehydroepiandrosterone (DHEA)-induced PCOS by modulating the gut microbiota. METHODS: We induced PCOS in female mice by injecting them with DHEA and then treated them with omega-3 PUFAs. 16S ribosomal DNA (rDNA) amplicon sequencing, fecal microbiota transplantation (FMT) and antibiotic treatment were used to evaluate the role of microbiota in the regulation of ovarian functions and insulin resistance (IR) by omega-3 PUFAs. To further investigate the mechanism of gut microbiota on omega-3-mediated ovarian and metabolic protective effects, inflammatory and oxidative stress markers in ovaries and thermogenic markers in subcutaneous and brown adipose tissues were investigated. RESULTS: We found that oral supplementation with omega-3 PUFAs ameliorates the PCOS phenotype. 16S rDNA analysis revealed that omega-3 PUFA treatment increased the abundance of beneficial bacteria in the gut, thereby alleviating DHEA-induced gut dysbiosis. Antibiotic treatment and FMT experiments further demonstrated that the mechanisms underlying omega-3 benefits likely involve direct effects on the ovary to inhibit inflammatory cytokines such as IL-1ß, TNF-α and IL-18. In addition, the gut microbiota played a key role in the improvement of adipose tissue morphology and function by decreasing multilocular cells and thermogenic markers such as Ucp1, Pgc1a, Cited and Cox8b within the subcutaneous adipose tissues. CONCLUSION: These findings indicate that omega-3 PUFAs ameliorate androgen-induced gut microbiota dysbiosis. The gut microbiota plays a key role in the regulation of omega-3-mediated IR protective effects in polycystic ovary syndrome mice. Moreover, omega-3 PUFA-regulated improvements in the ovarian dysfunction associated with PCOS likely involve direct effects on the ovary to inhibit inflammation. Our findings suggest that omega-3 supplementation may be a promising therapeutic approach for the treatment of PCOS by modulating gut microbiota and alleviating ovarian dysfunction and insulin resistance.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Polycystic Ovary Syndrome , Animals , Female , Mice , Dehydroepiandrosterone/toxicity , Gastrointestinal Microbiome/physiology , Insulin Resistance , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/physiopathology , Fatty Acids, Omega-3/therapeutic use
8.
Cell Death Discov ; 9(1): 163, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188682

ABSTRACT

In recent years, the postponement of childbearing has become a critical social issue. Male fertility is negatively associated with age because of testis aging. Spermatogenesis is impaired with age, but the molecular mechanism remains unknown. The dynamic posttranslational modification O-linked N-acetylglucosamine (O-GlcNAc), which is a type of monosaccharide modification, has been shown to drive the process of aging in various systems, but it has not yet been investigated in the testis and male reproductive aging. Thus, this study aims to investigate the alteration of O-GlcNAc with aging and explore the role of O-GlcNAc in spermatogenesis. Here, we demonstrate that the decline in spermatogenesis in aged mice is associated with elevation of O-GlcNAc. O-GlcNAc is specifically localized in differentiating spermatogonia and spermatocytes, indicating its crucial role in meiotic initiation and progression. Mimicking the age-related elevation of O-GlcNAc in young mice by disabling O-GlcNAcase (OGA) using the chemical inhibitor Thiamet-G can recapitulate the impairment of spermatogenesis in aged mice. Mechanistically, the elevation of O-GlcNAc in the testis leads to meiotic pachytene arrest due to defects in synapsis and recombination. Furthermore, decreasing O-GlcNAc in aged testes using an O-GlcNAc transferase (OGT) inhibitor can partially rescue the age-related impairment of spermatogenesis. Our results highlight that O-GlcNAc, as a novel posttranslational modification, participates in meiotic progression and drives the impairment of spermatogenesis during aging.

9.
Aging Cell ; 20(12): e13508, 2021 12.
Article in English | MEDLINE | ID: mdl-34751998

ABSTRACT

An increasing number of men are fathering children at an older age than in the past. While advanced maternal age has long been recognized as a risk factor for adverse reproductive outcomes, the influence of paternal age on reproduction is incompletely comprehended. Herein, we found that miR-125a-5p was upregulated in the sperm of aging males and was related to inferior sperm DNA integrity as an adverse predictor. Moreover, we demonstrated that miR-125a-5p suppressed mitochondrial function and increased cellular DNA damage in GC2 cells. We also found that miR-125a-5p perturbed embryo development at specific morula/blastocyst stages. Mechanistically, we confirmed that miR-125a-5p disturbed the mitochondrial function by targeting Rbm38 and activating the p53 damage response pathway, and induced a developmental delay in a p21-dependent manner. Our study revealed an important role of miR-125a-5p in sperm function and early embryo development of aging males, and provided a fresh view to comprehend the aging process in sperm.


Subject(s)
DNA Damage/genetics , Embryonic Development/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , Aging , Humans , Male , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL