Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Environ Res ; 244: 117931, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38103774

ABSTRACT

Arable land is facing the growing challenge of land degradation due to intensive use and this is beginning to affect global food security. However, active and passive restoration can improve soil characteristics and reshape microbial communities. Despite the increasing focus on changes in microbial communities during restoration, the mechanisms underlying how microbes drive the soil quality index (SQI) in arable land restoration remain unclear. In this study, we selected conventional farmland (CF, heavily intensified) and two restoration strategies (AR, artificial restoration; NR, natural restoration), with the same context (including soil texture, climate, etc.), and measured the microbial indicators over 2 years to investigate the mechanisms driving SQI improvement on restored arable land. The AR and NR treatments resulted in a 50% and 58% increase in SQI, respectively, compared to CF as soil nutrient levels increased, resulting in higher microbial biomasses and enzyme activities. Microbial abundance on the AR land was approximately two times greater than on the NR land due to the introduction of legumes. Bacterial diversity declined, while fungi developed in a more diverse direction under the restoration strategies. The AR and NR areas were mainly enriched with rhizobium (Microvirga, Bradyrhizobium), which contribute to healthy plant growth. The pathogenic fungi (Gibberella, Fusarium, Volutella) were more abundant in the CF area and the plant pathogen guild was about five times higher in the restored areas. Following arable land restoration, microbial life history strategies shifted from r-to K-strategists due to the higher proportion of recalcitrant SOC (DOC/SOC decreased by 18%-30%). The altered microbial community in the restored areas created new levels of functionality, with a 2.6%-4.3% decrease in bacterial energy metabolism (oxidative phosphorylation, C fixation, and N metabolism decreased by 7%, 4%, and 6%, respectively). Structural equation modelling suggested that restoration strategy affected SQI either directly by increasing total soil nutrient levels or indirectly by altering the microbial community and that fungal community composition and bacterial diversity made the largest contributions to SQI. These results provided new insights into soil quality improvement from a microbial perspective and can help guide future arable land restoration.


Subject(s)
Mycobiome , Soil , Bacteria/genetics , Plants , Biomass , Fungi , Soil Microbiology
2.
J Environ Manage ; 360: 121088, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735070

ABSTRACT

Residue returning (RR) was widely implemented to increase soil organic carbon (SOC) in farmland. Extensive studies concentrated on the effects of RR on SOC quantity instead of SOC fractions at aggregate scales. This study investigated the effects of 20-year RR on the distribution of labile (e.g., dissolved, microbial biomass, and permanganate oxidizable organic) and stable (e.g., microbial necromass) carbon fractions at aggregate scales, as well as their contribution to SOC accumulation and mineralization. The findings indicated a synchronized variation in the carbon content of bacterial and fungal necromass. Residue retention (RR) notably elevated the concentration of bacterial and fungal necromass carbon, while it did not amplify the microbial necromass carbon (MNC) contribution to SOC when compared to residue removal (R0) in the topsoil (0-5 cm). In the subsoil (5-15 cm), RR increased the MNC contribution to SOC concentration by 21.2%-33.4% and mitigated SOC mineralization by 12.6% in micro-aggregates (P < 0.05). Besides, RR increased soil ß-glucosidase and peroxidase activities but decreased soil phenol oxidase activity in micro-aggregates (P < 0.05). These indicated that RR might accelerate cellulose degradation and conversion to stable microbial necromass C, and thus RR improved SOC stability because SOC occluded in micro-aggregates were more stable. Interestingly, SOC concentration was mainly regulated by MNC, while SOC mineralization was by dissolved organic carbon under RR, both of which were affected by soil carbon, nitrogen, and phosphorus associated nutrients and enzyme activities. The findings of this study emphasize that the paths of RR-induced SOC accumulation and mineralization were different, and depended on stable and labile C, respectively. Overall, long-term RR increased topsoil carbon quantity and subsoil carbon quality.


Subject(s)
Carbon , Oryza , Soil , Soil/chemistry , Oryza/growth & development , Triticum , Soil Microbiology , Agriculture/methods
3.
J Environ Manage ; 328: 116990, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36508980

ABSTRACT

Methane (CH4) is the main greenhouse gas emitted from rice paddy fields driven by methanogens, for which methanogenic abundance on CH4 production has been intensively investigated. However, information is limited about the relationship between methanogenic diversity (e.g., richness and evenness) and CH4 production. Three independent field experiments with different straw managements including returning method, burial depth, and burial amount were used to identify the effects of methanogenic diversity on CH4 production, and its regulating factors from soil properties in a rice-wheat cropping system. The results showed that methanogenic evenness (dominance) can explain 23% of variations in CH4 production potential. CH4 production potential was positively related to methanogenic evenness (R2 = 0.310, p < 0.001), which is driven by soil organic carbon (SOC), available phosphorus (AP), and nitrate (NO3-) through structure equation model (SEM). These findings indicate that methanogenic evenness has a critical role in evaluating the responses of CH4 production to agricultural practices following changes in soil properties. The SEM also revealed that SOC concentration influenced CH4 production potential indirectly via complementarity of methanogenic evenness (dominance) and available phosphorus (AP). Increasing SOC accumulation improved AP release and stimulated CH4 production when SOC was at a low level, whereas decreased evenness and suppressed CH4 production when SOC was at a high level. A nonlinear relationship was detected between SOC and CH4 production potential, and CH4 production potential decreased when SOC was ≥14.16 g kg-1. Our results indicated that the higher SOC sequestration can not only mitigate CO2 emissions directly but CH4 emissions indirectly, highlighting the importance to enhance SOC sequestration using optimum agricultural practices in a rice-wheat cropping system.


Subject(s)
Euryarchaeota , Greenhouse Gases , Oryza , Soil/chemistry , Carbon/analysis , Agriculture/methods , Methane/analysis , Triticum , Nitrous Oxide/analysis
4.
J Environ Manage ; 324: 116346, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36166863

ABSTRACT

Phosphorus (P) limitation is a widespread problem of primary production in dryland submitted to persistent nitrogen (N) deposition. The legume alfalfa (Medicago sativa L.), which can fix N2, might potentially strengthen P limitation in dryland ecosystems and is widely distributed as forage. However, there is still unclear how alfalfa grassland mobilizes the soil P to meet its demand. In this experiment, alfalfa introduction was used for long-term revegetation to evaluate the P uptake of plants from deep soil and assess the P limitation induced by N deposition compared with fallow. Our results showed that alfalfa introduction increased the soil P storage significantly at 0-2.4 m soil depth (+0.74 Mg ha-1), whereas it decreased at 2.4-4.8 m soil depth (-0.21 Mg ha-1) after 15-year establishment. Alfalfa establishment increased soil organic P concentration (180.9 mg kg-1 vs. 67.2 mg kg-1) and its relative contribution to total P (19.64% vs. 8.08%) at 0-4.8 m. Alfalfa establishment also increased the concentration and proportion of labile and intermediate P fractions at 0-4.8 m (9.12 mg kg-1 vs. 6.87 mg kg-1, 1.12% vs. 0.98%; 16.06 mg kg-1 vs. 8.39 mg kg-1, 1.69% vs. 1.17%). Alfalfa introduction decreased the concentrated HCl-Pi (250.66 mg kg-1 vs. 229.32 mg kg-1, 36.81% vs. 28.91%) in 2.4-4.8 m soil depth. These results indicated that the deep root system of alfalfa grassland could promote the P mobilization from deep to shallow soil. The concentrated HCl-Pi may be the main potential P source of alfalfa from 2.4-4.8 m to 0-2.4 m of soil depth, and long-term establishment of alfalfa can alleviate P limitation caused by N deposition in carbonate soil. Our results suggested that species with deep roots (such as alfalfa) could be selected as an economical way to mitigate nitrogen deposition in drylands.


Subject(s)
Medicago sativa , Soil , Nitrogen/analysis , Phosphorus , Ecosystem , Carbonates
5.
New Phytol ; 229(1): 230-244, 2021 01.
Article in English | MEDLINE | ID: mdl-32749703

ABSTRACT

Clarifying the coordination of leaf hydraulic traits with gas exchange across closely-related species adapted to varying rainfall can provide insights into plant habitat distribution and drought adaptation. The leaf hydraulic conductance (Kleaf ), stomatal conductance (gs ), net assimilation (A), vein embolism and abscisic acid (ABA) concentration during dehydration were quantified, as well as pressure-volume curve traits and vein anatomy in 10 Caragana species adapted to a range of mean annual precipitation (MAP) conditions and growing in a common garden. We found a positive correlation between Ψleaf at 50% loss of Kleaf (Kleaf P50 ) and maximum Kleaf (Kleaf-max ) across species. Species from low-MAP environments exhibited more negative Kleaf P50 and turgor loss point, and higher Kleaf-max and leaf-specific capacity at full turgor, along with higher vein density and midrib xylem per leaf area, and a higher ratio of Kleaf-max : maximum gs . Tighter stomatal control mediated by higher ABA accumulation during dehydration in these species resulted in an increase in hydraulic safety and intrinsic water use efficiency (WUEi ) during drought. Our results suggest that high hydraulic safety and efficiency combined with greater stomatal sensitivity triggered by ABA production and leading to greater WUEi provides drought tolerance in Caragana species adapted to low-MAP environments.


Subject(s)
Caragana , Droughts , Plant Leaves , Water , Xylem
6.
Planta ; 250(2): 629-642, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31139926

ABSTRACT

MAIN CONCLUSION: Primitive wheat follows an opposite metabolic law from modern wheat with regard to leaf biomass/reproductive growth vs above-ground biomass that is under the regulation of non-hydraulic root signals and that influences resource acquisition and utilization. Non-hydraulic root signals (nHRS) are so far affirmed as a unique positive response to drying soil in wheat, and may imply huge differences in energy metabolism and source-sink relationships between primitive and modern wheat species. Using a pot-culture split-root technique to induce nHRS, four primitive wheat genotypes (two diploids and two tetraploids) and four modern wheat ones (released from different breeding decades) were compared to address the above issue. The nHRS was continuously induced in drying soil, ensuring the operation of energy metabolism under the influence of nHRS. We found that primitive wheat followed an opposite size-dependent allometric pattern (logy = αlogx + logß) in comparison with modern wheat. The relationships between ear biomass (y-axis) vs above-ground biomass (x-axis), and between reproductive biomass (y-axis) and vegetative (x-axis) biomass fell into a typical allometric pattern in primitive wheat (α > 1), and the nHRS significantly increased α (P < 0.01). However, in modern wheat, they turned to be in an isometric pattern (α ≈ 1). Regardless of nHRS, either leaf (i.e., metabolic rate) or stem biomass generally exhibited an isometric relationship with above-ground biomass in primitive wheat (α ≈ 1), while in modern wheat they fell into an allometric pattern (α > 1). Allometric scaling of specific leaf area (SLA) or biomass density showed superior capabilities of resource acquisition and utilization in modern wheat over primitive ones. We therefore proposed a generalized model to reveal how modern wheat possesses the pronounced population yield advantage over primitive wheat, and its implications on wheat domestication.


Subject(s)
Signal Transduction , Triticum/physiology , Biomass , Diploidy , Domestication , Droughts , Genotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/physiology , Reproduction , Soil/chemistry , Triticum/genetics , Triticum/growth & development
7.
Soft Matter ; 14(39): 8030-8035, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30246851

ABSTRACT

The relationship between adhesion force and the height drops containing difenoconazole-loaded mesoporous silica nanoparticles (DF-MSNs)/Tween 80 bounce on cabbage leaf surfaces was investigated as a function of Tween 80 concentration. The adhesion force of a pesticide droplet on cabbage leaf surfaces was assessed using a high-sensitivity microelectromechanical balance system and the impact behavior was recorded with a high-speed camera. The height droplets bounced decreased with increasing adhesion force, with a negative correlation between the height of the bouncing drops and adhesion force. Although droplets containing ≥0.06% Tween 80 adhered to the cabbage leaves, the retraction height was still observed to decrease as the adhesion force increased. The experimental results indicate that for cabbage leaf surfaces, the adhesion force has a significant effect on the height drops bounce. The results provide new insights into how researchers can screen for formulations for hydrophobic target crops and how to increase spray adhesion to difficult-to-wet crop leaf surfaces.

8.
Soft Matter ; 14(29): 6070-6075, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29987304

ABSTRACT

The relation between the surface limiting elasticity modulus, ε0, of difenoconazole-loaded mesoporous silica nanoparticle (DF-MSN) formulations with associated SDS and the height of the first returning droplet impacting on cabbage and rice leaf surfaces was investigated. The surface dilational rheology properties were determined by means of surface tension relaxation. The impact of a droplet on the leaf surface was recorded with a high-speed camera. The surface limiting elasticity modulus, ε0, shows differences with different SDS concentrations. A positive correlation between droplet first rebound height and the surface limiting elasticity modulus, ε0, is observed. The pesticide droplet impact on the target leaf surface is a rather complex phenomenon, so the focus of this article is to establish a relationship between the surface limiting elasticity modulus, ε0, and droplet first rebound height. These findings introduce a chemical way to affect the impact behavior of pesticide droplets on target crop leaf surfaces, which may be of particular importance for pesticide spraying and crop protection, especially for hydrophobic and superhydrophobic target crops.

9.
Ecology ; 98(9): 2261-2266, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28783218

ABSTRACT

Although the importance of group selection in nature is highly controversial, several researchers have argued that plant breeding for agriculture should be based on group selection, because the goal in agriculture is to optimize population production, not individual fitness. A core hypothesis behind this claim is that crop genotypes with the highest individual fitness in a mixture of genotypes will not produce the highest population yield, because fitness is often increased by "selfish" behaviors, which reduce population performance. We tested this hypothesis by growing 35 cultivars of spring wheat (Triticum aestivum L.) in mixtures and monocultures, and analyzing the relationship between population yield in monoculture and individual yield in mixture. The relationship was unimodal, as predicted. The highest-yielding populations were from cultivars that had intermediate fitness, and these produced, on average, 35% higher yields than cultivars with the highest fitness. It is unlikely that plant breeding or genetic engineering can improve traits that natural selection has been optimizing for millions of years, but there is unutilized potential in traits that increase crop yield by decreasing individual fitness.


Subject(s)
Agriculture , Biological Evolution , Triticum/physiology , Genotype , Phenotype
10.
Plant Physiol ; 167(1): 137-52, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25416474

ABSTRACT

Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.


Subject(s)
Abscisic Acid/biosynthesis , Arabidopsis Proteins/physiology , Arabidopsis/physiology , Osmotic Pressure/physiology , Abscisic Acid/physiology , Arabidopsis/metabolism , Dioxygenases/physiology , Gene Expression Profiling , Plant Proteins/physiology , Signal Transduction/physiology
11.
J Sci Food Agric ; 96(5): 1431-9, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-25914023

ABSTRACT

BACKGROUND: The hypothesis that positive and negative interactions account for adaptive strategies was tested in a controlled study with two oat (Avena sativa) genotypes: 'Manotick' with erect leaves and 'Oa1316-1' with prostrate leaves. An increasing competition pattern was designed by varying the number of seeds planted in each container and the space between containers, thus creating different planting density regimes (i.e. alternative and solid treatments). RESULTS: Total biomass of individual plants tended to decrease exponentially with increasing density in both genotypes. Under high density stress, Manotick allocated more biomass to the roots and produced 50% more tillers, leading to more non-productive tillers and lower harvest index in the alternative than in the solid treatment. In contrast, Oa1316-1 allocated more biomass to panicles and stems, and less to the roots, with fewer tillers. CONCLUSIONS: With increasing density and strengthening intraspecific competition, Manotick reduced aboveground biomass allocation, leading to lower yield, while Oa1316-1 decreased allocation to the roots, but increased allocation to the panicles under an increasingly competitive environment. These adjustments were mechanically derived from negative and positive interactions, ensuring greater yield in the prostrate type. Our findings provided a novel rationale for a planting strategy based on plant type selections.


Subject(s)
Agriculture/methods , Avena/growth & development , Avena/genetics , Genotype , Adaptation, Physiological/genetics , Biomass , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Roots/growth & development
12.
Ecology ; 95(8): 2109-20, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25230463

ABSTRACT

The Tibetan Plateau (TP) is experiencing high rates of climatic change. We present a novel combined mechanistic-bioclimatic modeling approach to determine how changes in precipitation and temperature on the TP may impact net primary production (NPP) in four major biomes (forest, shrub, grass, desert) and if there exists a maximum rain use efficiency (RUE(MAX)) that represents Huxman et al.'s "boundary that constrain[s] site-level productivity and efficiency." We used a daily mechanistic ecosystem model to generate 40-yr outputs using observed climatic data for scenarios of decreased precipitation (25-100%); increased air temperature (1 degrees - 6 degrees C); simultaneous changes in both precipitation (+/- 50%, +/- 25%) and air temperature (+1 to +6 degrees C) and increased interannual variability (IAV) of precipitation (+1 sigma to +3 sigma, with fixed means, where sigma is SD). We fitted model output from these scenarios to Huxman et al.'s RUE(MAX) bioclimatic model, NPP = alpha + RUE x PPT (where alpha is the intercept, RUE is rain use efficiency, and PPT is annual precipitation). Based on these analyses, we conclude that there is strong support (when not explicit, then trend-wise) for Huxman et al.'s assertion that biomes converge to a common RUE(MAX) during the driest years at a site, thus representing the boundary for highest rain use efficiency; the interactive effects of simultaneously decreasing precipitation and increasing temperature on NPP for the TP is smaller than might be expected from additive, single-factor changes in these drivers; and that increasing IAV of precipitation may ultimately have a larger impact on biomes of the Tibetan Plateau than changing amounts of rainfall and air temperature alone.


Subject(s)
Climate Change , Ecosystem , Environmental Monitoring , Tibet
13.
J Environ Manage ; 145: 162-9, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25026372

ABSTRACT

Water scarcity is a critical policy issue in the arid regions of northwest China. The local government has widely adopted integrated water resources management (IWRM), but lacks support from farmers and farm communities. We undertook a case study in the Minqin oasis of northwest China to examine farmers' responses to IWRM and understand why farmer water users' associations (WUAs) are not functioning effectively at the community level. Results of quantitative and qualitative surveys of 392 farmers in 27 administrative villages showed that over 70% of farmers disapprove of the IWRM market-based reforms. In particular, the failure of farmer WUAs can be attributed to overlapping organizational structures between the WUAs and the villagers' committees; mismatches between the organizational scale of the WUAs and practical irrigation management by the farmers themselves; marginalization of rural women in water decision-making processes; and the inflexibility of IWRM implementation. An important policy implication from this study is that rebuilding farmer WUAs is key to overcoming the difficulties of IWRM. The current water governance structure, which is dominated by administrative systems, must be thoroughly reviewed to break the vicious cycle of tension and distrust between farmers and the government.


Subject(s)
Agriculture , Attitude , Community Participation , Conservation of Natural Resources , Water Resources/analysis , Adolescent , Adult , China , Desert Climate , Female , Humans , Male , Middle Aged , Perception , Surveys and Questionnaires , Young Adult
14.
Sci Total Environ ; 920: 171046, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38369151

ABSTRACT

Food security, water scarcity, and excessive fossil energy use pose considerable challenges to sustainable agriculture. To understand how rain-fed farming systems on the Loess Plateau, China, reconcile yield increases with ecological conservation, we conducted an integrated evaluation based on the denitrification-decomposition (DNDC) model, agricultural statistics data using the Food-Energy-Water (FEW) nexus indicator. The results showed that maize yields with ridge-furrow plastic film mulching (PFM) were 3479, 8942, and 11,124 kg ha-1 under low (50 kg N ha-1), medium (200 kg N ha-1), and high (350 kg N ha-1) nitrogen (N) fertilizer rates, respectively, and that PFM increased yield and water use efficiency (WUE) by 110-253 % and 166-205 % compared to using no mulching (control, CK), respectively. Plastic film mulching also increased net energy (126-436 %), energy use efficiency (81-578 %), energy productivity (100-670 %), and energy profitability (126-994 %), and nitrogen fertilizer, compound fertilizer, and diesel fuel consumption by agricultural machinery were the main energy inputs. The PFM system reduced water consumption during the maize growing season and the green water footprint and gray water footprint decreased by 66-74 % and 44-68 %, respectively. The FEW nexus indicator, based on a high production at low environmental cost scenario, was greater under the PFM system and had the widest spatial distribution area at the medium-N application rate. Among the environmental factors, the nexus indicator was negatively correlated with precipitation (-0.37), air temperature (-0.36), and the aridity index (-0.36), but positively correlated with elevation (0.17). Our results suggest that the PFM system promotes resource-saving while increasing yields and moves dryland agriculture in an environmentally friendly direction, thus promoting the sustainable development of agroecosystems.


Subject(s)
Soil , Water , Water/analysis , Fertilizers , Agriculture/methods , Zea mays , China , Nitrogen/analysis , Plastics
15.
Plants (Basel) ; 13(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674484

ABSTRACT

Trait-based approaches are increasingly used to understand crop yield improvement, although they have not been widely applied to anatomical traits. Little is known about the relationships between root and leaf anatomy and yield in wheat. We selected 20 genotypes that have been widely planted in Luoyang, in the major wheat-producing area of China, to explore these relationships. A field study was performed to measure the yields and yield components of the genotypes. Root and leaf samples were collected at anthesis to measure the anatomical traits relevant to carbon allocation and water transport. Yield was negatively correlated with cross-sectional root cortex area, indicating that reduced root cortical tissue and therefore reduced carbon investment have contributed to yield improvement in this region. Yield was positively correlated with root xylem area, suggesting that a higher water transport capacity has also contributed to increased yields in this study. The area of the leaf veins did not significantly correlate with yield, showing that the high-yield genotypes did not have larger veins, but they may have had a conservative water use strategy, with tight regulation of water loss from the leaves. This study demonstrates that breeding for higher yields in this region has changed wheat's anatomical traits, reducing the roots' cortical tissue and increasing the roots' xylem investment.

16.
Sci Total Environ ; 861: 160615, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36464048

ABSTRACT

Soil fungi are closely associated with crop growth in agricultural ecosystems through processes such as nutrient uptake and pathogenesis. Plastic film mulching (PM) plays a dominant role in increasing crop yields in dryland agriculture worldwide. The functional guilds of soil fungi under PM and their effects on crops remain unclear. In this study, we explored the absolute abundance, diversity, community composition, and functional guilds of soil fungi after short-term (2 years) and long-term (10 years) mulching experiments. Short-term mulching caused a 37 %-51 % decrease in absolute fungal abundance owing to abrupt changes in the microenvironment. The response of the fungal community to PM varied with sites, with the effect being more pronounced under poor hydrothermal conditions (314 mm). The abundance of potential fungal pathogens decreased under PM; for example, Gibberella (maize ear rot) abundance was 45 % and 72 % lower under short- and long-term mulching, respectively, when compared with that in control. In contrast, the abundance of plant biocontrol fungi increased under PM; for instance, Glomeromycota abundance increased twofold under long-term mulching. Although PM did not alter the complexity and stability of fungal co-occurrence network, competition among fungi increased in the absence of sufficient carbon (C) sources. Long-term mulching reduced phytopathogen guilds by 12 %-77 % and increased arbuscular mycorrhizal fungi (AMF) guilds by 89 %-94 %. Structural equation modeling suggested that PM altered fungal functional guilds mainly by shaping the structure of the fungal community, and fungal pathogens decreased with increased AMF functional guilds, inducing higher maize yields. These results showed for the first time, from a microbial perspective, that pathogens reduction owing to PM could explain 4.4 % of maize yield variation, providing theoretical guidance to accomplish sustainability of continuous maize mulching.


Subject(s)
Ecosystem , Mycorrhizae , Plastics , Agriculture/methods , Soil/chemistry , Zea mays , Soil Microbiology , China
17.
Sci Total Environ ; 894: 164675, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37301394

ABSTRACT

Rice-wheat rotation (RWR) is one of the major cropping systems in China and plays a crucial role in the country's food security. With the promotion of "burn ban" and "straw return" policies, the "straw return + rice-wheat crop rotation system" has been developed in China's RWR area. However, the effect of promotion of straw return on production and ecological benefits of RWR areas is unclear. In this study, the main planting zones of RWR were examined, and ecological footprints and scenario simulation were applied to explore the effect of straw return on the food-carbon-water-energy nexus under conditions of a warming world. The results indicate that with rising temperatures and the promotion of straw return policies, the study area was in a "carbon sink" state during 2000-2019. The study area's total yield climbed by 48 % and the carbon (CF), water (WF) and energy (EF) footprints decreased by 163 %, 20 % and 11 %, respectively. Compared to 2000-2009, the temperature increase for 2010-2019 was negatively correlated with the increase in CF and WF and positively correlated with the increase of yield and EF. A 16 % reduction in chemical fertilizers, increasing the straw return rate to 80 % and utilizing tillage techniques such as furrow-buried straw return would contribute to sustainable agriculture in the RWR area under a projection of 1.5 °C increase in air temperature. The promotion of straw return has contributed to improved production and the maintenance and reduction of CF, WF, and EF in the RWR, but further optimization measures are required to reduce the footprint of agriculture in a warmer world.


Subject(s)
Oryza , Soil , Soil/chemistry , Triticum , Carbon/analysis , Water , Agriculture/methods , China , Fertilizers
18.
Sci Total Environ ; 859(Pt 2): 160338, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36414051

ABSTRACT

Intensive attentions have been paid to the positive effects on nitrous oxide (N2O) production under straw return or the presence of earthworms. Straw return as a sustainable practice can promote earthworm growth, how the interactions between straw and earthworms affect N2O production is still not well known. A split-plot field experiment (straw return as main plot and earthworm addition as subplot) was performed to quantify the interactive effects of straw and earthworm on N2O emissions from a wheat field and to determine the underlying mechanisms from nitrification and denitrification processes. The results showed that straw return significantly increased N2O emissions by 41.0 % under no earthworm addition but decreased it by 19.0 % under earthworm addition compared with straw removal (P < 0.05). The significant interaction between straw and earthworm benefits the mitigation of N2O emissions. Random forest model showed that denitrification and nitrification were dominant processes to affect N2O emissions at the jointing and booting growth stages of wheat, respectively. The interaction between straw and earthworm significantly decreased the abundances of N2O-producing bacterial genes such as nirS and nirK at the jointing stages, and AOB at the booting stages. The contrasting mechanisms in regulating N2O emissions at different growth stages should be considered in nitrogen recycling models to accurately predict available N and N2O dynamics. Our findings suggest that N2O emissions under straw return can be weakened with the increasing earthworm populations under the scenario of widely used conservation practices (e.g., straw return and no-till) due to significant interaction between straw and earthworms.


Subject(s)
Oligochaeta , Oryza , Animals , Soil , Triticum , Nitrous Oxide/analysis
19.
Huan Jing Ke Xue ; 44(11): 6172-6180, 2023 Nov 08.
Article in Zh | MEDLINE | ID: mdl-37973100

ABSTRACT

The production and use of plastic blends have been gradually increasing owing to their versatility and low cost. However, the photodegradation of plastic blends in seawater and the potential risk to the marine environment are still not well understood. In this study, plastic blends including polypropylene/thermoplastic starch blends(PP/TPS) and polylactic acid/poly(butylene adipate-co-terephthalate)/thermoplastic starch blends(PLA/PBAT/TPS) were investigated. The corresponding neat polymers, namely polypropylene(PP) and polylactic acid(PLA), were set as control groups. We investigated the formation of MPs and the changes in the physicochemical properties of plastic blends after photodegradation in seawater. The size distribution of MPs indicated that PP/TPS and PLA/PBAT/TPS were more likely to produce small-sized particles after photodegradation than PP and PLA owing to their poorer mechanical properties and lower resistance to UV irradiation. Noticeable surface morphology alterations, including cracks and wrinkles, were observed for plastic blends following photodegradation, whereas PP and PLA were relatively resistant. After photodegradation, the ATR-FTIR spectrum of PP/TPS and PLA/PBAT/TPS showed a significant decrease in the characteristic bands of thermoplastic starch(TPS), indicating the degradation of their starch fractions. The C 1s spectra demonstrated that aged plastic blends contained fewer -OH groups than the pristine MPs did, further confirming the photodegradation of TPS. These results indicate that PP/TPS and PLA/PBAT/TPS had a higher degree of photodegradation than PP and PLA and thereby generated more small-sized MPs. In summary, plastic blends may pose a higher risk to the marine environment than neat polymers, and caution should be taken in the production and use of plastic blends.

20.
Front Plant Sci ; 14: 1331704, 2023.
Article in English | MEDLINE | ID: mdl-38146272

ABSTRACT

Introduction: Limited water and soil phosphorus (P) availability often hampers lucerne productivity in semiarid regions. Plastic film mulch and P application typically enhance young lucerne (2-3 years) productivity by increasing soil water use and P availability. However, the prolonged impact of film mulch and P application on lucerne productivity as the stand ages remains unclear. Methods: This study conducted a 9-year field experiment on the semiarid Loess Plateau to investigate how film mulch and P application affect lucerne forage yield, soil water content, and soil fertility. The field experiment used a split-plot design with randomized blocks, in which the whole plots were with (M1) and without plastic film mulch (M0), and the split plots were four P rates (0 (P0), 9.7 (P1), 19.2 (P2), and 28.8 (P3) kg P ha-1). Results and discussion: The M1 treatment produced significantly higher lucerne forage yields than the M0 treatment during the first five years, but the yield-increasing effect of film mulch gradually diminished over time, with no effect in Years 6-8, and lower yields than the M0 treatment in Year 9. Phosphorus fertilization significantly increased forage yield after Year 3 in the M0 treatment, but only in Years 3-5 in the M1 treatment. In Years 2-5, film mulch significantly increased soil organic carbon, total nitrogen (N), inorganic N, and microbial biomass carbon in P0, P1, and P2 but not in P3. However, in Years 7-9, film mulch significantly decreased soil available potassium (K), organic carbon mineralization, lucerne density, and shoot K concentration, but did not reduce soil N and P availability at any level P of application. Moreover, plastic film mulch significantly increased the soil water content at 0-300 cm deep from Year 7 onwards. In conclusion, film mulch ceased to enhance lucerne production beyond year 6, which could not be attributed to soil water content, N or P availability but was partially associated with reduced soil K availability. Consequently, future research should focus on soil K availability, and K addition should be considered after five years in lucerne pastures mulched with plastic film in semiarid areas.

SELECTION OF CITATIONS
SEARCH DETAIL