Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 8(2): e1002526, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22346755

ABSTRACT

Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.


Subject(s)
Chitin Synthase/genetics , Chitin/metabolism , Magnaporthe/physiology , Magnaporthe/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology , Base Sequence , Cell Wall/metabolism , Chitin/analysis , Chitin Synthase/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hordeum/microbiology , Hyphae/genetics , Hyphae/pathogenicity , Hyphae/physiology , Hyphae/ultrastructure , Magnaporthe/genetics , Magnaporthe/ultrastructure , Molecular Sequence Data , Phenotype , Plant Leaves/microbiology , Protein Structure, Tertiary , Seedlings/microbiology , Sequence Analysis, DNA , Sequence Deletion , Spores, Fungal/genetics , Spores, Fungal/pathogenicity , Spores, Fungal/physiology , Spores, Fungal/ultrastructure , Virulence
2.
Fungal Genet Biol ; 56: 33-41, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23591122

ABSTRACT

Melanized appressoria are highly specialized infection structures formed by germ tubes of the rice blast fungus Magnaporthe oryzae for plant infection. M. oryzae also forms appressorium-like structures on hyphal tips. Whereas appressorium formation by conidial germ tubes has been well characterized, formation of appressorium-like structures by hyphal tips is under-investigated. In a previous study, we found that the chs7 deletion mutant failed to form appressoria on germ tubes but were normal in the development of appressorium-like structures on artificial hydrophobic surfaces. In this study, we compared the differences between the formation of appressoria by germ tubes and appressorium-like structures by hyphal tips in M. oryzae. Structurally, both appressoria and appressorium-like structures had a melanin layer that was absent in the pore region. In general, the latters were 1.4-fold larger in size but had lower turgor pressure than appressoria, which is consistent with its lower efficiency in plant penetration. Treatments with cAMP, IBMX, or a cutin monomer efficiently induced appressorium formation but not the development of appressorium-like structures. In contrast, coating surfaces with waxes stimulated the formation of both infection structures. Studies with various signaling mutants indicate that Osm1 and Mps1 are dispensable but Pmk1 is essential for both appressorium formation and development of appressorium-like structures on hyphal tips. Interestingly, the cpkA mutant was reduced in the differentiation of appressorium-like structures but not appressorium formation. We also observed that the con7 mutant generated in our lab failed to form appressorium-like structures on hyphal tips but still produced appressoria by germ tubes on hydrophobic surfaces. Con7 is a transcription factor regulating the expression of CHS7. Overall, these results indicate that the development of appressorium-like structures by hyphal tips and formation of appressoria by germ tubes are not identical differentiation processes in M. oryzae and may involve different molecular mechanisms.


Subject(s)
Hyphae/cytology , Magnaporthe/cytology , Gene Expression Regulation, Fungal , Genes, Fungal , Hyphae/chemistry , Magnaporthe/chemistry , Melanins/analysis , Microscopy , Mutation , Oryza/microbiology , Plant Diseases/microbiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL