Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.847
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 23(10): 1433-1444, 2022 10.
Article in English | MEDLINE | ID: mdl-36138184

ABSTRACT

Naive T cells undergo radical changes during the transition from dormant to hyperactive states upon activation, which necessitates de novo protein production via transcription and translation. However, the mechanism whereby T cells globally promote translation remains largely unknown. Here, we show that on exit from quiescence, T cells upregulate transfer RNA (tRNA) m1A58 'writer' proteins TRMT61A and TRMT6, which confer m1A58 RNA modification on a specific subset of early expressed tRNAs. These m1A-modified early tRNAs enhance translation efficiency, enabling rapid and necessary synthesis of MYC and of a specific group of key functional proteins. The MYC protein then guides the exit of naive T cells from a quiescent state into a proliferative state and promotes rapid T cell expansion after activation. Conditional deletion of the Trmt61a gene in mouse CD4+ T cells causes MYC protein deficiency and cell cycle arrest, disrupts T cell expansion upon cognate antigen stimulation and alleviates colitis in a mouse adoptive transfer colitis model. Our study elucidates for the first time, to our knowledge, the in vivo physiological roles of tRNA-m1A58 modification in T cell-mediated pathogenesis and reveals a new mechanism of tRNA-m1A58-controlled T cell homeostasis and signal-dependent translational control of specific key proteins.


Subject(s)
Colitis , RNA, Transfer , Adoptive Transfer , Animals , Cell Proliferation/genetics , Colitis/genetics , Mice , Protein Biosynthesis , RNA, Transfer/genetics , RNA, Transfer/metabolism , T-Lymphocytes/metabolism
2.
Nat Immunol ; 22(9): 1107-1117, 2021 09.
Article in English | MEDLINE | ID: mdl-34385713

ABSTRACT

The linkage between neutrophil death and the development of autoimmunity has not been thoroughly explored. Here, we show that neutrophils from either lupus-prone mice or patients with systemic lupus erythematosus (SLE) undergo ferroptosis. Mechanistically, autoantibodies and interferon-α present in the serum induce neutrophil ferroptosis through enhanced binding of the transcriptional repressor CREMα to the glutathione peroxidase 4 (Gpx4, the key ferroptosis regulator) promoter, which leads to suppressed expression of Gpx4 and subsequent elevation of lipid-reactive oxygen species. Moreover, the findings that mice with neutrophil-specific Gpx4 haploinsufficiency recapitulate key clinical features of human SLE, including autoantibodies, neutropenia, skin lesions and proteinuria, and that the treatment with a specific ferroptosis inhibitor significantly ameliorates disease severity in lupus-prone mice reveal the role of neutrophil ferroptosis in lupus pathogenesis. Together, our data demonstrate that neutrophil ferroptosis is an important driver of neutropenia in SLE and heavily contributes to disease manifestations.


Subject(s)
Ferroptosis/physiology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Neutropenia/pathology , Neutrophils/immunology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Autoantibodies/immunology , Autoimmunity/immunology , Cyclic AMP Response Element Modulator/metabolism , Humans , Interferon-alpha/immunology , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Promoter Regions, Genetic/genetics , Reactive Oxygen Species/metabolism
3.
Cell ; 174(1): 32-43.e15, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29958111

ABSTRACT

The organization of action into sequences underlies complex behaviors that are essential for organismal survival and reproduction. Despite extensive studies of innate sequences in relation to central pattern generators, how learned action sequences are controlled and whether they are organized as a chain or a hierarchy remain largely unknown. By training mice to perform heterogeneous action sequences, we demonstrate that striatal direct and indirect pathways preferentially encode different behavioral levels of sequence structure. State-dependent closed-loop optogenetic stimulation of the striatal direct pathway can selectively insert a single action element into the sequence without disrupting the overall sequence length. Optogenetic manipulation of the striatal indirect pathway completely removes the ongoing subsequence while leaving the following subsequence to be executed with the appropriate timing and length. These results suggest that learned action sequences are not organized in a serial but rather a hierarchical structure that is distinctly controlled by basal ganglia pathways.


Subject(s)
Learning , Neurons/metabolism , Optogenetics , Animals , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Diphtheria Toxin/pharmacology , Electrodes, Implanted , Evoked Potentials, Visual , Female , Lasers , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscimol/pharmacology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , RGS Proteins/genetics , Receptors, N-Methyl-D-Aspartate/deficiency , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
4.
Cell ; 174(3): 505-520, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30053424

ABSTRACT

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Subject(s)
Chromosome Mapping/methods , Neurodevelopmental Disorders/genetics , Systems Biology/methods , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Genomics/methods , Humans , Neurobiology/methods , Neuropsychiatry
5.
Mol Cell ; 84(7): 1290-1303.e7, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38401542

ABSTRACT

Most eukaryotic proteins are degraded by the 26S proteasome after modification with a polyubiquitin chain. Substrates lacking unstructured segments cannot be degraded directly and require prior unfolding by the Cdc48 ATPase (p97 or VCP in mammals) in complex with its ubiquitin-binding partner Ufd1-Npl4 (UN). Here, we use purified yeast components to reconstitute Cdc48-dependent degradation of well-folded model substrates by the proteasome. We show that a minimal system consists of the 26S proteasome, the Cdc48-UN ATPase complex, the proteasome cofactor Rad23, and the Cdc48 cofactors Ubx5 and Shp1. Rad23 and Ubx5 stimulate polyubiquitin binding to the 26S proteasome and the Cdc48-UN complex, respectively, allowing these machines to compete for substrates before and after their unfolding. Shp1 stimulates protein unfolding by the Cdc48-UN complex rather than substrate recruitment. Experiments in yeast cells confirm that many proteins undergo bidirectional substrate shuttling between the 26S proteasome and Cdc48 ATPase before being degraded.


Subject(s)
Proteasome Endopeptidase Complex , Saccharomyces cerevisiae Proteins , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
6.
Mol Cell ; 84(2): 309-326.e7, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38096828

ABSTRACT

Membraneless organelles formed by phase separation of proteins and nucleic acids play diverse cellular functions. Whether and, if yes, how membraneless organelles in ways analogous to membrane-based organelles also undergo regulated fusion and fission is unknown. Here, using a partially reconstituted mammalian postsynaptic density (PSD) condensate as a paradigm, we show that membraneless organelles can undergo phosphorylation-dependent fusion and fission. Without phosphorylation of the SAPAP guanylate kinase domain-binding repeats, the upper and lower layers of PSD protein mixtures form two immiscible sub-compartments in a phase-in-phase organization. Phosphorylation of SAPAP leads to fusion of the two sub-compartments into one condensate accompanied with an increased Stargazin density in the condensate. Dephosphorylation of SAPAP can reverse this event. Preventing SAPAP phosphorylation in vivo leads to increased separation of proteins from the lower and upper layers of PSD sub-compartments. Thus, analogous to membrane-based organelles, membraneless organelles can also undergo regulated fusion and fission.


Subject(s)
Biomolecular Condensates , Post-Synaptic Density , Animals , Phosphorylation , Post-Synaptic Density/metabolism , Cell Physiological Phenomena , Protein Binding , Organelles/metabolism , Mammals
7.
Cell ; 160(5): 928-939, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25723167

ABSTRACT

Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even early after telomerase inactivation (ETI), yeast mother cells show transient DNA damage response (DDR) episodes, stochastically altered cell-cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI phenotypes occurred well before the population senescence caused late after telomerase inactivation (LTI). They were morphologically distinct from LTI senescence, were genetically uncoupled from telomere length, and were rescued by elevating dNTP pools. Our combined genetic and single-cell analyses show that, well before critical telomere shortening, telomerase is continuously required to respond to transient DNA replication stress in mother cells and that a lack of telomerase accelerates otherwise normal aging.


Subject(s)
Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Telomerase/metabolism , Cell Cycle , Chromosomes, Fungal/metabolism , DNA Replication , Mitochondria/metabolism , Ribonucleoside Diphosphate Reductase/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Telomere/metabolism
8.
Mol Cell ; 82(3): 570-584.e8, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34951965

ABSTRACT

The hexameric Cdc48 ATPase (p97 or VCP in mammals) cooperates with its cofactor Ufd1/Npl4 to extract polyubiquitinated proteins from membranes or macromolecular complexes for degradation by the proteasome. Here, we clarify how the Cdc48 complex unfolds its substrates and translocates polypeptides with branchpoints. The Cdc48 complex recognizes primarily polyubiquitin chains rather than the attached substrate. Cdc48 and Ufd1/Npl4 cooperatively bind the polyubiquitin chain, resulting in the unfolding of one ubiquitin molecule (initiator). Next, the ATPase pulls on the initiator ubiquitin and moves all ubiquitin molecules linked to its C terminus through the central pore of the hexameric double ring, causing transient ubiquitin unfolding. When the ATPase reaches the isopeptide bond of the substrate, it can translocate and unfold both N- and C-terminal segments. Ubiquitins linked to the branchpoint of the initiator dissociate from Ufd1/Npl4 and move outside the central pore, resulting in the release of unfolded, polyubiquitinated substrate from Cdc48.


Subject(s)
Polyubiquitin/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitinated Proteins/metabolism , Valosin Containing Protein/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Transport , Protein Unfolding , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitinated Proteins/genetics , Ubiquitination , Valosin Containing Protein/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
9.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760575

ABSTRACT

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , Decitabine , Ubiquitin-Protein Ligases , Decitabine/pharmacology , Humans , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , DNA Methylation/drug effects , Antimetabolites, Antineoplastic/pharmacology , Animals , Sumoylation/drug effects
10.
Immunity ; 50(4): 941-954, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995508

ABSTRACT

Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1ß (IL-1ß), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.


Subject(s)
Cardiovascular Diseases/immunology , Cytokines/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Cardiovascular Diseases/drug therapy , Cholesterol/metabolism , Clinical Trials as Topic , Cytokines/antagonists & inhibitors , Cytokines/therapeutic use , Disease Progression , Foam Cells/immunology , Foam Cells/metabolism , Gastrointestinal Microbiome , Humans , Inflammasomes/immunology , Inflammation/drug therapy , Inflammation/immunology , Interleukin-1beta/antagonists & inhibitors , Mice, Knockout , Models, Immunological , Muscle, Smooth, Vascular/immunology , Phagocytes/immunology , Phagocytes/metabolism , Signal Transduction , Swine , Translational Research, Biomedical
11.
Nature ; 603(7902): 667-671, 2022 03.
Article in English | MEDLINE | ID: mdl-35296862

ABSTRACT

Most social species self-organize into dominance hierarchies1,2, which decreases aggression and conserves energy3,4, but it is not clear how individuals know their social rank. We have only begun to learn how the brain represents social rank5-9 and guides behaviour on the basis of this representation. The medial prefrontal cortex (mPFC) is involved in social dominance in rodents7,8 and humans10,11. Yet, precisely how the mPFC encodes relative social rank and which circuits mediate this computation is not known. We developed a social competition assay in which mice compete for rewards, as well as a computer vision tool (AlphaTracker) to track multiple, unmarked animals. A hidden Markov model combined with generalized linear models was able to decode social competition behaviour from mPFC ensemble activity. Population dynamics in the mPFC predicted social rank and competitive success. Finally, we demonstrate that mPFC cells that project to the lateral hypothalamus promote dominance behaviour during reward competition. Thus, we reveal a cortico-hypothalamic circuit by which the mPFC exerts top-down modulation of social dominance.


Subject(s)
Hypothalamus , Prefrontal Cortex , Animals , Hypothalamic Area, Lateral , Mice , Reward , Social Behavior
12.
Nature ; 612(7941): 787-794, 2022 12.
Article in English | MEDLINE | ID: mdl-36450980

ABSTRACT

Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.


Subject(s)
Brain Neoplasms , Cell Transformation, Neoplastic , Fetus , Medulloblastoma , Humans , Brain Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Cerebellar Neoplasms/pathology , Cerebellum/cytology , Cerebellum/pathology , Fetus/cytology , Fetus/pathology , Medulloblastoma/pathology , Neural Stem Cells/cytology , Neural Stem Cells/pathology , Prognosis
13.
Nature ; 608(7923): 586-592, 2022 08.
Article in English | MEDLINE | ID: mdl-35859170

ABSTRACT

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Subject(s)
Basolateral Nuclear Complex , Learning , Neural Pathways , Neurotensin , Punishment , Reward , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/physiology , Calcium/metabolism , Cues , Neuronal Plasticity , Neurotensin/metabolism , Optogenetics , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology
14.
Mol Cell ; 80(1): 102-113.e6, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32853547

ABSTRACT

Repair of covalent DNA-protein crosslinks (DPCs) by DNA-dependent proteases has emerged as an essential genome maintenance mechanism required for cellular viability and tumor suppression. However, how proteolysis is restricted to the crosslinked protein while leaving surrounding chromatin proteins unharmed has remained unknown. Using defined DPC model substrates, we show that the DPC protease SPRTN displays strict DNA structure-specific activity. Strikingly, SPRTN cleaves DPCs at or in direct proximity to disruptions within double-stranded DNA. In contrast, proteins crosslinked to intact double- or single-stranded DNA are not cleaved by SPRTN. NMR spectroscopy data suggest that specificity is not merely affinity-driven but achieved through a flexible bipartite strategy based on two DNA binding interfaces recognizing distinct structural features. This couples DNA context to activation of the enzyme, tightly confining SPRTN's action to biologically relevant scenarios.


Subject(s)
Cross-Linking Reagents/metabolism , DNA-Binding Proteins/metabolism , DNA/chemistry , Cell Line , DNA-Binding Proteins/chemistry , Humans , Magnetic Resonance Spectroscopy , Models, Biological , Protein Domains , Structure-Activity Relationship
15.
EMBO J ; 42(1): e110518, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36341575

ABSTRACT

Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.


Subject(s)
Calreticulin , Oryza , Calreticulin/metabolism , Oryza/genetics , Oryza/metabolism , Temperature , Cold Temperature , Protein Kinases/genetics , Protein Kinases/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
16.
N Engl J Med ; 390(24): 2264-2273, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38884332

ABSTRACT

BACKGROUND: Alteplase is the standard agent used in early reperfusion therapy, but alternative thrombolytic agents are needed. The efficacy and safety of reteplase as compared with alteplase in patients with acute ischemic stroke are unclear. METHODS: We randomly assigned patients with ischemic stroke within 4.5 hours after symptom onset in a 1:1 ratio to receive intravenous reteplase (a bolus of 18 mg followed 30 minutes later by a second bolus of 18 mg) or intravenous alteplase (0.9 mg per kilogram of body weight; maximum dose, 90 mg). The primary efficacy outcome was an excellent functional outcome, defined as a score of 0 or 1 on the modified Rankin scale (range, 0 [no neurologic deficit, no symptoms, or completely recovered] to 6 [death]) at 90 days. The primary safety outcome was symptomatic intracranial hemorrhage within 36 hours after symptom onset. RESULTS: A total of 707 patients were assigned to receive reteplase, and 705 were assigned to receive alteplase. An excellent functional outcome occurred in 79.5% of the patients in the reteplase group and in 70.4% of those in the alteplase group (risk ratio, 1.13; 95% confidence interval [CI], 1.05 to 1.21; P<0.001 for noninferiority and P = 0.002 for superiority). Symptomatic intracranial hemorrhage within 36 hours after disease onset was observed in 17 of 700 patients (2.4%) in the reteplase group and in 14 of 699 (2.0%) of those in the alteplase group (risk ratio, 1.21; 95% CI, 0.54 to 2.75). The incidence of any intracranial hemorrhage at 90 days was higher with reteplase than with alteplase (7.7% vs. 4.9%; risk ratio, 1.59; 95% CI, 1.00 to 2.51), as was the incidence of adverse events (91.6% vs. 82.4%; risk ratio, 1.11; 95% CI, 1.03 to 1.20). CONCLUSIONS: Among patients with ischemic stroke within 4.5 hours after symptom onset, reteplase was more likely to result in an excellent functional outcome than alteplase. (Funded by China Resources Angde Biotech Pharma and others; RAISE ClinicalTrials.gov number, NCT05295173.).


Subject(s)
Fibrinolytic Agents , Ischemic Stroke , Recombinant Proteins , Tissue Plasminogen Activator , Humans , Tissue Plasminogen Activator/therapeutic use , Tissue Plasminogen Activator/adverse effects , Tissue Plasminogen Activator/administration & dosage , Male , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/administration & dosage , Female , Aged , Middle Aged , Ischemic Stroke/drug therapy , Recombinant Proteins/therapeutic use , Recombinant Proteins/adverse effects , Recombinant Proteins/administration & dosage , Intracranial Hemorrhages/chemically induced , Aged, 80 and over
17.
N Engl J Med ; 391(3): 203-212, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38884324

ABSTRACT

BACKGROUND: Tenecteplase is an effective thrombolytic agent for eligible patients with stroke who are treated within 4.5 hours after the onset of stroke. However, data regarding the effectiveness of tenecteplase beyond 4.5 hours are limited. METHODS: In a trial conducted in China, we randomly assigned patients with large-vessel occlusion of the middle cerebral artery or internal carotid artery who had salvageable brain tissue as identified on perfusion imaging and who did not have access to endovascular thrombectomy to receive tenecteplase (at a dose of 0.25 mg per kilogram of body weight; maximum dose, 25 mg) or standard medical treatment 4.5 to 24 hours after the time that the patient was last known to be well (including after stroke on awakening and unwitnessed stroke). The primary outcome was the absence of disability, which was defined as a score of 0 or 1 on the modified Rankin scale (range, 0 to 6, with higher scores indicating greater disability), at day 90. The key safety outcomes were symptomatic intracranial hemorrhage and death. RESULTS: A total of 516 patients were enrolled; 264 were randomly assigned to receive tenecteplase and 252 to receive standard medical treatment. Less than 2% of the patients (4 in the tenecteplase group and 5 in the standard-treatment group) underwent rescue endovascular thrombectomy. Treatment with tenecteplase resulted in a higher percentage of patients with a modified Rankin scale score of 0 or 1 at 90 days than standard medical treatment (33.0% vs. 24.2%; relative rate, 1.37; 95% confidence interval, 1.04 to 1.81; P = 0.03). Mortality at 90 days was 13.3% with tenecteplase and 13.1% with standard medical treatment, and the incidence of symptomatic intracranial hemorrhage within 36 hours after treatment was 3.0% and 0.8%, respectively. CONCLUSIONS: In this trial involving Chinese patients with ischemic stroke due to large-vessel occlusion, most of whom did not undergo endovascular thrombectomy, treatment with tenecteplase administered 4.5 to 24 hours after stroke onset resulted in less disability and similar survival as compared with standard medical treatment, and the incidence of symptomatic intracranial hemorrhage appeared to be higher. (Funded by the National Natural Science Foundation of China and others; TRACE-III ClinicalTrials.gov number, NCT05141305.).


Subject(s)
Fibrinolytic Agents , Ischemic Stroke , Tenecteplase , Tissue Plasminogen Activator , Humans , Tenecteplase/therapeutic use , Tenecteplase/adverse effects , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/administration & dosage , Male , Middle Aged , Tissue Plasminogen Activator/therapeutic use , Tissue Plasminogen Activator/adverse effects , Female , Aged , Ischemic Stroke/drug therapy , Ischemic Stroke/surgery , Thrombectomy , Time-to-Treatment , Intracranial Hemorrhages/etiology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/surgery
18.
Nat Methods ; 21(7): 1257-1274, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38890427

ABSTRACT

The dry mass and the orientation of biomolecules can be imaged without a label by measuring their permittivity tensor (PT), which describes how biomolecules affect the phase and polarization of light. Three-dimensional (3D) imaging of PT has been challenging. We present a label-free computational microscopy technique, PT imaging (PTI), for the 3D measurement of PT. PTI encodes the invisible PT into images using oblique illumination, polarization-sensitive detection and volumetric sampling. PT is decoded from the data with a vectorial imaging model and a multi-channel inverse algorithm, assuming uniaxial symmetry in each voxel. We demonstrate high-resolution imaging of PT of isotropic beads, anisotropic glass targets, mouse brain tissue, infected cells and histology slides. PTI outperforms previous label-free imaging techniques such as vector tomography, ptychography and light-field imaging in resolving the 3D orientation and symmetry of organelles, cells and tissue. We provide open-source software and modular hardware to enable the adoption of the method.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Animals , Mice , Brain/diagnostic imaging , Microscopy/methods , Software , Humans , Image Processing, Computer-Assisted/methods
19.
PLoS Biol ; 22(4): e3002591, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652732

ABSTRACT

Lysosomes are degradation centers of cells and intracellular hubs of signal transduction, nutrient sensing, and autophagy regulation. Dysfunction of lysosomes contributes to a variety of diseases, such as lysosomal storage diseases (LSDs) and neurodegeneration, but the mechanisms are not well understood. Altering lysosomal activity and examining its impact on the occurrence and development of disease is an important strategy for studying lysosome-related diseases. However, methods to dynamically regulate lysosomal function in living cells or animals are still lacking. Here, we constructed lysosome-localized optogenetic actuators, named lyso-NpHR3.0, lyso-ArchT, and lyso-ChR2, to achieve optogenetic manipulation of lysosomes. These new actuators enable light-dependent control of lysosomal membrane potential, pH, hydrolase activity, degradation, and Ca2+ dynamics in living cells. Notably, lyso-ChR2 activation induces autophagy through the mTOR pathway, promotes Aß clearance in an autophagy-dependent manner in cellular models, and alleviates Aß-induced paralysis in the Caenorhabditis elegans model of Alzheimer's disease. Our lysosomal optogenetic actuators supplement the optogenetic toolbox and provide a method to dynamically regulate lysosomal physiology and function in living cells and animals.


Subject(s)
Amyloid beta-Peptides , Autophagy , Caenorhabditis elegans , Lysosomes , Optogenetics , Lysosomes/metabolism , Autophagy/physiology , Optogenetics/methods , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Amyloid beta-Peptides/metabolism , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Calcium/metabolism , TOR Serine-Threonine Kinases/metabolism , Hydrogen-Ion Concentration , HEK293 Cells , HeLa Cells
20.
Mol Cell ; 73(4): 775-787.e10, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30642763

ABSTRACT

Little information is available about how post-transcriptional mechanisms regulate the aging process. Here, we show that the RNA-binding protein Pumilio2 (PUM2), which is a translation repressor, is induced upon aging and acts as a negative regulator of lifespan and mitochondrial homeostasis. Multi-omics and cross-species analyses of PUM2 function show that it inhibits the translation of the mRNA encoding for the mitochondrial fission factor (Mff), thereby impairing mitochondrial fission and mitophagy. This mechanism is conserved in C. elegans by the PUM2 ortholog PUF-8. puf-8 knock-down in old nematodes and Pum2 CRISPR/Cas9-mediated knockout in the muscles of elderly mice enhances mitochondrial fission and mitophagy in both models, hence improving mitochondrial quality control and tissue homeostasis. Our data reveal how a PUM2-mediated layer of post-transcriptional regulation links altered Mff translation to mitochondrial dynamics and mitophagy, thereby mediating age-related mitochondrial dysfunctions.


Subject(s)
Aging/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitophagy , RNA-Binding Proteins/metabolism , Age Factors , Aging/genetics , Aging/pathology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Female , HEK293 Cells , HeLa Cells , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/pathology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , RNA-Binding Proteins/genetics , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL