Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Immunity ; 53(2): 303-318.e5, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32579887

ABSTRACT

Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.


Subject(s)
Granulocyte Precursor Cells/cytology , Monocytes/cytology , Myelopoiesis/physiology , Neutrophils/cytology , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Single-Cell Analysis
2.
Immunity ; 48(2): 364-379.e8, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466759

ABSTRACT

Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.


Subject(s)
Bone Marrow Cells/physiology , Neutrophils/physiology , Animals , Bone Marrow Cells/immunology , CCAAT-Enhancer-Binding Proteins/physiology , Cell Lineage , Cell Movement , Cell Proliferation , Cells, Cultured , Gene Expression Profiling , Humans , Mice , Neoplasms, Experimental/immunology , Neutrophils/immunology
3.
Sci Adv ; 8(9): eabj4641, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35245124

ABSTRACT

Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.


Subject(s)
Bacterial Infections , Sepsis , Animals , Cytokines , Humans , Macrophages , Mice , Mice, Inbred C57BL , Monocytes
4.
Physiol Plant ; 138(4): 474-84, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19947974

ABSTRACT

In our earlier work, we showed that the liverwort Dumortiera hirsuta produces an extracellular oxidative burst of superoxide radicals during rehydration following desiccation stress. The oxidative burst is a common early response of organisms to biotic and abiotic stresses, with suggested roles in signal transduction, formation of protective substances such as suberin, melanin and lignin and defense against pathogens. To discover which enzymes are responsible for the extracellular superoxide production, we isolated apoplastic fractions from D. hirsuta, surveyed for the presence of potential redox enzymes, and performed non-denaturing polyacrylamide gel electrophoresis activity stains. Various isoforms of peroxidase (EC 1.11.1.7) and tyrosinase (o-diphenolase) (EC 1.10.3.1) were present at significant levels in the apoplast. In-gel activity staining revealed that some peroxidases isoforms could produce superoxide, while tryosinases could readily metabolize 3,4-dihydroxy phenyl l-alanine (l-dopa) into melanins. Interestingly, some peroxidase isoforms could oxidize the native tyrosinase substrate l-dopa at significant levels, even in the absence of hydrogen peroxide, while others could do so only in the presence of hydrogen peroxide. In D. hirsuta, peroxidases may play an important role in melanin formation. Possible functions for these diverse oxidases in liverwort biology are discussed.


Subject(s)
Cell Wall/enzymology , Hepatophyta/enzymology , Monophenol Monooxygenase/metabolism , Peroxidase/metabolism , Superoxides/metabolism , Biocatalysis/drug effects , Electrophoresis, Polyacrylamide Gel , Extracellular Space/metabolism , Hepatophyta/metabolism , Hydrogen Peroxide/pharmacology , Isoenzymes/metabolism , Kinetics , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Plant Proteins/metabolism
5.
J Exp Med ; 213(11): 2293-2314, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27811056

ABSTRACT

It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation , Monocytes/cytology , Receptors, CXCR4/metabolism , Animals , Antigens, Ly/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Circadian Rhythm/genetics , Endotoxins/toxicity , Female , Gene Expression Profiling , Lung/blood supply , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/metabolism
6.
J Exp Med ; 210(11): 2321-36, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24081949

ABSTRACT

Blood neutrophil homeostasis is essential for successful host defense against invading pathogens. Circulating neutrophil counts are positively regulated by CXCR2 signaling and negatively regulated by the CXCR4-CXCL12 axis. In particular, G-CSF, a known CXCR2 signaler, and plerixafor, a CXCR4 antagonist, have both been shown to correct neutropenia in human patients. G-CSF directly induces neutrophil mobilization from the bone marrow (BM) into the blood, but the mechanisms underlying plerixafor-induced neutrophilia remain poorly defined. Using a combination of intravital multiphoton microscopy, genetically modified mice and novel in vivo homing assays, we demonstrate that G-CSF and plerixafor work through distinct mechanisms. In contrast to G-CSF, CXCR4 inhibition via plerixafor does not result in neutrophil mobilization from the BM. Instead, plerixafor augments the frequency of circulating neutrophils through their release from the marginated pool present in the lung, while simultaneously preventing neutrophil return to the BM. Our study demonstrates for the first time that drastic changes in blood neutrophils can originate from alternative reservoirs other than the BM, while implicating a role for CXCR4-CXCL12 interactions in regulating lung neutrophil margination. Collectively, our data provides valuable insights into the fundamental regulation of neutrophil homeostasis, which may lead to the development of improved treatment regimens for neutropenic patients.


Subject(s)
Bone Marrow/metabolism , Cell Movement/drug effects , Heterocyclic Compounds/pharmacology , Lung/cytology , Neutrophils/cytology , Receptors, CXCR4/antagonists & inhibitors , Animals , Benzylamines , Bone Marrow/drug effects , Cyclams , Granulocyte Colony-Stimulating Factor/pharmacology , Green Fluorescent Proteins/metabolism , Humans , Leukocyte Count , Macaca fascicularis , Mice , Microscopy, Fluorescence, Multiphoton , Muramidase/metabolism , Muscle, Skeletal/cytology , Mutation/genetics , Pulmonary Circulation , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Receptors, Interleukin-8B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL