Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Brain Mapp ; 45(4): e26586, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433651

ABSTRACT

The assessment of consciousness states, especially distinguishing minimally conscious states (MCS) from unresponsive wakefulness states (UWS), constitutes a pivotal role in clinical therapies. Despite that numerous neural signatures of consciousness have been proposed, the effectiveness and reliability of such signatures for clinical consciousness assessment still remains an intense debate. Through a comprehensive review of the literature, inconsistent findings are observed about the effectiveness of diverse neural signatures. Notably, the majority of existing studies have evaluated neural signatures on a limited number of subjects (usually below 30), which may result in uncertain conclusions due to small data bias. This study presents a systematic evaluation of neural signatures with large-scale clinical resting-state electroencephalography (EEG) signals containing 99 UWS, 129 MCS, 36 emergence from the minimally conscious state, and 32 healthy subjects (296 total) collected over 3 years. A total of 380 EEG-based metrics for consciousness detection, including spectrum features, nonlinear measures, functional connectivity, and graph-based measures, are summarized and evaluated. To further mitigate the effect of data bias, the evaluation is performed with bootstrap sampling so that reliable measures can be obtained. The results of this study suggest that relative power in alpha and delta serve as dependable indicators of consciousness. With the MCS group, there is a notable increase in the phase lag index-related connectivity measures and enhanced functional connectivity between brain regions in comparison to the UWS group. A combination of features enables the development of an automatic detector of conscious states.


Subject(s)
Consciousness , Wakefulness , Humans , Reproducibility of Results , Benchmarking , Electroencephalography , Persistent Vegetative State
2.
Hepatol Res ; 54(2): 189-200, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37776019

ABSTRACT

AIM: Microvascular invasion (MVI) is an independent risk factor for postoperative recurrence and metastasis in hepatocellular carcinoma (HCC). However, the specific protein expression profiles that differentiate HCC with MVI from those without MVI remain unclear. METHODS: The profiles of proteins in early-stage HCC tissues and normal liver tissues were characterized by quantitative proteomics techniques. Immunohistochemical (IHC) staining was undertaken on tissue microarrays from 80 HCC patients to assess the expression of MSH2 and MSH6. Cell counting, colony formation, migration, and invasion assays were carried out in vitro. RESULTS: We identified 5164 proteins in both HCC tissues and adjacent normal liver tissues. Compared to HCC without MVI, 148 upregulated proteins and 97 downregulated proteins were found in HCC with MVI. Particularly noteworthy was the remarkable upregulation of MSH6/MSH2 among these dysregulated proteins in HCC with MVI. Further validation through bioinformatics prediction and IHC confirmed the elevated expression of MSH6/MSH2, which correlated with aggressive disease characteristics and poor prognosis. Receiver operating characteristic curve analyses revealed a substantial area under the curve of 0.761 (specificity 71.79%, sensitivity 73.17%) for the combined use of MSH6/MSH2. Knockdown of MSH6/MSH2 significantly inhibited HCC cell proliferation and invasion in vitro. CONCLUSIONS: Our study establishes MSH6 or MSH2 as an oncogene that is prominently overexpressed during HCC progression, which provides new targets for HCC with MVI.

3.
Cereb Cortex ; 33(6): 2507-2516, 2023 03 10.
Article in English | MEDLINE | ID: mdl-35670595

ABSTRACT

When listening to speech, cortical activity can track mentally constructed linguistic units such as words, phrases, and sentences. Recent studies have also shown that the neural responses to mentally constructed linguistic units can predict the outcome of patients with disorders of consciousness (DoC). In healthy individuals, cortical tracking of linguistic units can be driven by both long-term linguistic knowledge and online learning of the transitional probability between syllables. Here, we investigated whether statistical learning could occur in patients in the minimally conscious state (MCS) and patients emerged from the MCS (EMCS) using electroencephalography (EEG). In Experiment 1, we presented to participants an isochronous sequence of syllables, which were composed of either 4 real disyllabic words or 4 reversed disyllabic words. An inter-trial phase coherence analysis revealed that the patient groups showed similar word tracking responses to real and reversed words. In Experiment 2, we presented trisyllabic artificial words that were defined by the transitional probability between words, and a significant word-rate EEG response was observed for MCS patients. These results suggested that statistical learning can occur with a minimal conscious level. The residual statistical learning ability in MCS patients could potentially be harnessed to induce neural plasticity.


Subject(s)
Learning , Persistent Vegetative State , Humans , Learning/physiology , Electroencephalography/methods , Language , Auditory Perception
4.
Chem Rec ; 23(5): e202300034, 2023 May.
Article in English | MEDLINE | ID: mdl-37010422

ABSTRACT

Rhodium (Rh) is a non-toxic transition metal used as various nanomaterials with unique structures and properties. Rh-based nanozymes can mimic the activities of natural enzymes, overcome the limitation of the application scope of natural enzymes, and interact with various biological microenvironments to play a variety of functions. Rh-based nanozymes can be synthesized in various ways, and different modification and regulation methods can also enable users to control catalytic performance by adjusting enzyme active sites. The construction of Rh-based nanozymes has attracted great interest in the biomedical field and impacted the industry and other areas. This paper reviews the typical synthesis and modification strategies, unique properties, applications, challenges, and prospects of Rh-based nanozymes. Next, the unique features of Rh-based nanozymes are emphasized, including adjustable enzyme-like activity, stability, and biocompatibility. In addition, we discuss Rh-based nanozymes biosensors and detection, biomedical therapy, and industrial and other applications. Finally, the future challenges and prospects of Rh-based nanozymes are proposed.


Subject(s)
Nanostructures , Rhodium , Nanostructures/chemistry , Catalysis
5.
Molecules ; 28(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38067456

ABSTRACT

Demethyleneberberine is an active component extracted from the Chinese herbal drug Cortex Phellodendri. It is also a metabolite of berberine in animals and humans. However, the pharmacokinetics, tissue distribution and excretion of demethyleneberberine have not been reported. The present study aimed to investigate the pharmacokinetic parameters of demethyleneberberine by applying high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). After intragastric administration of demethyleneberberine in rats and mice, the pharmacokinetics, tissue distribution and excretion of demethyleneberberine were comparatively studied for the first time. The plasma concentration of demethyleneberberine reached its peak within 5 min after intragastric administration in both rats and mice. Furthermore, its bioavailability was comparable, ranging from 4.47% to 5.94%, higher than that of berberine. The total excretion of demethyleneberberine in the urine, feces and bile was 7.28~9.77%. These findings provide valuable insights into the pharmacological and clinical research on demethyleneberberine.


Subject(s)
Berberine , Humans , Rats , Mice , Animals , Tissue Distribution , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods
6.
J Transl Med ; 20(1): 601, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522680

ABSTRACT

BACKGROUND: The subclassification of prolonged disorders of consciousness (DoC) based on sleep patterns is important for the evaluation and treatment of the disease. This study evaluates the correlation between polysomnographic patterns and the efficacy of transcranial direct current stimulation (tDCS) in patients with prolonged DoC due to stroke. METHODS: In total, 33 patients in the vegetative state (VS) with sleep cycles or without sleep cycles were randomly assigned to either active or sham tDCS groups. Polysomnography was used to monitor sleep changes before and after intervention. Additionally, clinical scale scores and electroencephalogram (EEG) analysis were performed before and after intervention to evaluate the efficacy of tDCS on the patients subclassified according to their sleep patterns. RESULTS: The results suggest that tDCS improved the sleep structure, significantly prolonged total sleep time (TST) (95%CI: 14.387-283.527, P = 0.013) and NREM sleep stage 2 (95%CI: 3.157-246.165, P = 0.040) of the VS patients with sleep cycles. It also significantly enhanced brain function of patients with sleep cycles, which were reflected by the increased clinical scores (95%CI: 0.340-3.440, P < 0.001), the EEG powers and functional connectivity in the brain and the 6-month prognosis. Moreover, the changes in NREM sleep stage 2 had a significant positive correlation with each index of the ß band. CONCLUSION: This study reveals the importance of sleep patterns in the prognosis and treatment of prolonged DoC and provides new evidence for the efficacy of tDCS in post-stroke patients with VS patients subclassified by sleep pattern. Trial registration URL: https://www. CLINICALTRIALS: gov . Unique identifier: NCT03809936. Registered 18 January 2019.


Subject(s)
Stroke , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Consciousness Disorders/therapy , Treatment Outcome , Electroencephalography , Sleep , Stroke/complications , Stroke/therapy
7.
Gastrointest Endosc ; 96(5): 787-795.e6, 2022 11.
Article in English | MEDLINE | ID: mdl-35718070

ABSTRACT

BACKGROUND AND AIMS: The clinical application of GI endoscopy for the diagnosis of multiple diseases using artificial intelligence (AI) has been limited by its high false-positive rates. There is an unmet need to develop a GI endoscopy AI-assisted diagnosis system (GEADS) to improve diagnostic accuracy and clinical utility. METHODS: In this retrospective, multicenter study, a convolutional neural network was trained to assess upper GI diseases based on 26,228 endoscopic images from Dazhou Central Hospital that were randomly assigned (3:1:1) to a training dataset, validation dataset, and test dataset, respectively. To validate the model, 6 external independent datasets comprising 51,372 images of upper GI diseases were collected. In addition, 1 prospective dataset comprising 27,975 images was collected. The performance of GEADS was compared with endoscopists with 2 professional degrees of expertise: expert and novice. Eight endoscopists were in the expert group with >5 years of experience, whereas 3 endoscopists were in the novice group with 1 to 5 years of experience. RESULTS: The GEADS model achieved an accuracy of .918 (95% confidence interval [CI], .914-.922), with an F1 score of .884 (95% CI, .879-.889), recall of .873 (95% CI, .868-.878), and precision of .890 (95% CI, .885-.895) in the internal validation dataset. In the external validation datasets and 1 prospective validation dataset, the diagnostic accuracy of the GEADS ranged from .841 (95% CI, .834-.848) to .949 (95% CI, .935-.963). With the help of the GEADS, the diagnosing accuracies of novice and expert endoscopists were significantly improved (P < .001). CONCLUSIONS: The AI system can assist endoscopists in improving the accuracy of diagnosing upper GI diseases.


Subject(s)
Artificial Intelligence , Gastrointestinal Diseases , Humans , Gastroscopy/methods , Retrospective Studies , Neural Networks, Computer , Algorithms , Gastrointestinal Diseases/diagnostic imaging
8.
Cancer Cell Int ; 21(1): 107, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33588847

ABSTRACT

BACKGROUND: PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. METHODS: PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. RESULTS: PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. CONCLUSIONS: This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.

9.
Appl Microbiol Biotechnol ; 105(9): 3559-3572, 2021 May.
Article in English | MEDLINE | ID: mdl-33937925

ABSTRACT

N-linked glycosylation plays critical roles in folding, receptor binding, and immunomodulating of hemagglutinin (HA), the main antigen in influenza vaccines. Chicken embryos are the predominant production host for influenza vaccines, but Madin-Darby canine kidney (MDCK) cells have emerged as an important alternative host. In this study, we compared glycosylation patterns, including the occupancy of potential glycosylation sites and the distribution of different glycans, on the HAs of three strains of influenza viruses for the production a trivalent seasonal flu vaccine for the 2015-2016 Northern Hemisphere season (i.e., A/California/7/2009 (H1N1) X179A, A/Switzerland/9715293/2013 (H3N2) NIB-88, and B/Brisbane/60/2008 NYMC BX-35###). Of the 8, 12, and 11 potential glycosylation sites on the HAs of H1N1, H3N2, and B strains, respectively, most were highly occupied. For the H3N2 and B strains, MDCK-derived HAs contained more sites being partially occupied (<95%) than embryo-derived HAs. A highly sensitive glycan assay was developed where 50 different glycans were identified, which was more than what has been reported previously, and their relative abundance was quantified. In general, MDCK-derived HAs contain more glycans of higher molecular weight. High-mannose species account for the most abundant group of glycans, but at a lower level as compared to those reported in previous studies, presumably due to that lower abundance, complex structure glycans were accounted for in this study. The different glycosylation patterns between MDCK- and chicken embryo-derived HAs may help elucidate the role of glycosylation on the function of influenza vaccines. KEY POINTS: • For the H3N2 and B strains, MDCK-derived HAs contained more partially (<95%) occupied glycosylation sites. • MDCK-derived HAs contained more glycans of higher molecular weight. • A systematic comparison of glycosylation on HAs used for trivalent seasonal flu vaccines was conducted.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Chick Embryo , Chickens , Dogs , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinins , Humans , Influenza A Virus, H3N2 Subtype/metabolism , Madin Darby Canine Kidney Cells , Seasons
10.
Eur Neurol ; 76(1-2): 1-7, 2016.
Article in English | MEDLINE | ID: mdl-27332827

ABSTRACT

OBJECTIVE: This study aimed to determine the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) on cerebral hemodynamics in patients with disorders of consciousness (DOC). METHODS: In this sham-controlled study, 20-Hz and sham rTMS were applied over the left primary motor cortex (M1) of 5 patients in a vegetative state (VS) and 5 patients in a minimally conscious state (MCS). The clinical behavior and cerebral blood flow (CBF) velocity in the bilateral middle cerebral artery (MCA) of the patients were evaluated before and after rTMS. RESULTS: Compared with the VS group, the MCS group exhibited significant increases in peak systolic velocity (PSV; p = 0.024) and mean flow velocity (MFV) of the left MCA that were temporally related to the rTMS (p = 0.042). There were no significant effects on CBF velocity in the sham-stimulation group or the right MCA. CONCLUSIONS: High-frequency rTMS exerts different effects on CBF depending on the level of consciousness in patients with DOC such that it increased PSV and MFV in patients in a MCS. These effects may be related to the varying degrees of disrupted neurovascular coupling and the autonomic control of the cerebral hemodynamics in patients in a VS or MCS.


Subject(s)
Cerebrovascular Circulation/physiology , Persistent Vegetative State/therapy , Transcranial Magnetic Stimulation/methods , Adult , Autonomic Nervous System/physiopathology , Female , Hemodynamics/physiology , Humans , Male , Middle Aged , Persistent Vegetative State/physiopathology , Treatment Outcome
11.
Zhonghua Bing Li Xue Za Zhi ; 43(10): 668-72, 2014 Oct.
Article in Zh | MEDLINE | ID: mdl-25567592

ABSTRACT

OBJECTIVE: To study the correlation between IDH1 mutation, MGMT expression, clinicopathologic features and post-radiotherapy prognosis in patients with astrocytoma. METHODS: Detection of IDH1 mutation and MGMT expression was carried out in 48 cases of astrocytoma (WHO grade II to III) by EnVision method with immunohistochemical staining. Follow-up data, including treatment response and overall survival time, were analyzed. RESULTS: The rates of IDH1 mutation and MGMT expression in astrocytomas were 62.7% (30/48) and 47.9% (23/48), respectively. There was a negative correlation between IDH1 mutation and MGMT expression (r = -0.641, P < 0.01). The age of patients with IDH1 mutation was younger at disease onset. The IDH1 mutation rate in patients with WHO grade II astrocytoma was higher than that in patients with WHO grade III tumor (P < 0.05). The age at onset was an independent factor affecting the expression of mutant IDH1. After radiotherapy, patients with IDH1 mutation+/MGMT- tumor carried a longer overall survival time than patients with IDH1 mutation-/MGMT+ tumor (P < 0.05). CONCLUSIONS: There is a correlation between IDH1 mutation and MGMT expression in WHO grade II to III astrocytoma. Age at onset is an independent factor affecting the expression of mutant IDH1. Tumors with IDH1+/MGMT- pattern show better response to radiotherapy than tumors with IDH1-/MGMT+ pattern. Detection of IDH1 mutation and MGMT protein expression can provide some guidance in choice of treatment modalities in patients with astrocytoma.


Subject(s)
Astrocytoma/genetics , Astrocytoma/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Isocitrate Dehydrogenase/genetics , Mutant Proteins/genetics , Mutation , Tumor Suppressor Proteins/metabolism , Adult , Age Factors , Age of Onset , Aged , Astrocytoma/mortality , Astrocytoma/pathology , Astrocytoma/radiotherapy , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Female , Humans , Male , Middle Aged , Prognosis
12.
Nat Commun ; 15(1): 719, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267434

ABSTRACT

The abuse of antibiotics urgently requires rapid identification of drug-resistant bacteria at the point of care (POC). Here we report a visual paper sensor that allows rapid (0.25-3 h) discrimination of the subtypes of ß-lactamase (the major cause of bacterial resistance) for precision antibiotic therapy. The sensor exhibits high performance in identifying antibiotic-resistant bacteria with 100 real samples from patients with diverse bacterial infections, demonstrating 100% clinical sensitivity and specificity. Further, this sensor can enhance the accuracy of antibiotic use from 48% empirically to 83%, and further from 50.6% to 97.6% after eliminating fungal infection cases. Our work provides a POC testing platform for guiding effective management of bacterial infections in both hospital and community settings.


Subject(s)
Bacterial Infections , beta-Lactamases , Humans , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hospitals , Point-of-Care Systems
13.
Int J Immunopathol Pharmacol ; 38: 3946320241227320, 2024.
Article in English | MEDLINE | ID: mdl-38248871

ABSTRACT

Background: Clear cell renal cell carcinoma (ccRCC) is the most invasive type of cancer, with a high risk of metastasis and recurrence. Therefore, there is an urgent need to identify novel prognostic predictors and therapeutic targets of ccRCC. Activating transcription factor 3 (ATF3), a tumor oncogene or repressor, has rarely been examined in ccRCC. In the present study, we comprehensively elucidate the prognostic value and potential functions of ATF3 in ccRCC.Methods: Several TCGA-based online databases were used to analyze ATF3 expression in ccRCC and determine ccRCC prognosis. The upstream-binding micro (mi) RNAs of ATF3 and long non-coding (lnc)RNAs were predicted using the StarBase database.Results: Analysis of several TCGA-based online databases showed that ATF3 expression is decreased in ccRCC, suggesting a significant association with the prognosis of patients with ccRCC. Furthermore, we found hsa-miR-221-3p to be potential regulatory miRNA of ATF3 in ccRCC. Prediction and analysis of the upstream lncRNAs indicated that PAXIP1-AS2 and OIP5-AS1 were the most potent upstream lncRNAs of the hsa-miR-221-3p/ATF3 axis in ccRCC. The results of the GO and KEGG analyses implied that ATF3 is likely involved in the regulation of apoptotic signaling in response to endoplasmic reticulum (ER) stress in ccRCC. Correlation analysis revealed a positive relationship between ATF3 expression and ER stress.Conclusions: Our in silico findings highlighted that ATF3 expression was low in ccRCC and negatively correlated with poor prognosis. Furthermore, PAXIP1-AS2 and the OIP5-AS1/hsa-miR-221-3p/ATF3 axis were identified as significant potential regulators of ER stress-mediated apoptosis in ccRCC.


Subject(s)
Activating Transcription Factor 3 , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Activating Transcription Factor 3/genetics , Biomarkers , Carcinoma , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics
14.
Curr Drug Metab ; 25(1): 2-12, 2024.
Article in English | MEDLINE | ID: mdl-38409696

ABSTRACT

Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.


Subject(s)
Liver , Nuclear Receptor Subfamily 1, Group D, Member 1 , Humans , Animals , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Liver/metabolism , Lipid Metabolism
15.
Adv Mater ; 36(8): e2307337, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37724878

ABSTRACT

Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.


Subject(s)
Environmental Science , Nanostructures , Catalysis , Nanostructures/chemistry
16.
Abdom Radiol (NY) ; 49(6): 1829-1838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600228

ABSTRACT

PURPOSE: To explore the feasibility of predicting the pathological activity of Crohn's disease (CD) based on dual-energy CT enterography (DECTE). METHODS: The clinical, endoscopic, imaging and pathological data of 55 patients with CD scanned by DECTE were retrospectively analyzed; the pathological results were used as a reference standard to classify the diseased bowel segments into active and inactive phases. The normalized iodine concentration (NIC), energy-spectrum curve slope K, dual energy index (DEI), fat fraction (FF) of the arterial phases and venous phases were compared. To assess the parameters' predictive ability, receiver-operating characteristic curves were used. The Delong test was used to compare the differences between the diagnostic efficiency of each parameter. RESULTS: A total of 84 intestinal segments were included in the study, including 54 active intestinal segments and 30 inactive intestinal segments. The NIC, energy-spectrum curve slope K and DEI were significantly different between active and inactive bowel segments in the arterial and venous phases (P < 0.05), while FF were not significantly different (P > 0.05). The largest area under the curve (AUC) of NIC, energy-spectrum curve slope K and DEI were higher in arterial phase than in venous phase. For identifying the intestinal activity of CD, the maximum AUC of NIC in arterial phase was 0.908, with a sensitivity of 0.833 and a specificity of 0.800, and the DEI in arterial phase had the highest sensitivity (0.944). CONCLUSION: The NIC, energy-spectrum curve slope K and DEI can effectively distinguish the active and inactive phases of the intestinal segments of CD patients and provide good assistance for determining further treatment.


Subject(s)
Contrast Media , Crohn Disease , Radiography, Dual-Energy Scanned Projection , Tomography, X-Ray Computed , Humans , Crohn Disease/diagnostic imaging , Female , Male , Adult , Retrospective Studies , Tomography, X-Ray Computed/methods , Radiography, Dual-Energy Scanned Projection/methods , Middle Aged , Feasibility Studies , Predictive Value of Tests , Adolescent , Aged
17.
Acad Radiol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38664142

ABSTRACT

RATIONALE AND OBJECTIVES: Microvascular invasion (MVI) is a key prognostic factor for hepatocellular carcinoma (HCC). The predictive models for solitary HCC could potentially integrate more comprehensive tumor information. Owing to the diverse findings across studies, we aimed to compare radiomic and non-radiomic methods for preoperative MVI detection in solitary HCC. MATERIALS AND METHODS: Articles were reviewed from databases including PubMed, Embase, Web of Science, and the Cochrane Library until April 7, 2023. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model within a 95% confidence interval (CI). Diagnostic accuracy was assessed using summary receiver-operating characteristic curves and the area under the curve (AUC). Meta-regression and Z-tests identified heterogeneity and compared the predictive accuracy. Subgroup analyses were performed to compare the AUC of two methods according to study type, study design, tumor size, modeling methods, and imaging modality. RESULTS: The analysis incorporated 26 studies involving 3539 patients with solitary HCC. The radiomics models showed a pooled sensitivity and specificity of 0.79 (95%CI: 0.72-0.85) and 0.78 (95%CI: 0.73-0.82), with an AUC at 0.85 (95%CI: 0.82-0.88). Conversely, the non-radiomics models had sensitivity and specificity of 0.74 (95%CI: 0.65-0.81) and 0.88 (95%CI: 0.82-0.92) and an AUC of 0.88 (95%CI: 0.85-0.91). Subgroups with preoperative MRI, larger tumors, and functional imaging had higher accuracy than those using preoperative CT, smaller tumors, and conventional imaging. CONCLUSION: Non-radiomic methods outperformed radiomic methods, but high heterogeneity calls across studies for cautious interpretation.

18.
Abdom Radiol (NY) ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704783

ABSTRACT

OBJECTIVE: To compare radiomics and non-radiomics in predicting early recurrence (ER) in patients with hepatocellular carcinoma (HCC) after curative surgery. METHODS: We systematically searched PubMed and Embase databases. Studies with clear reference criteria were selected. Data were extracted and assessed for quality using the quality in prognosis studies tool (QUIPS) by two independent authors. All included radiomics studies underwent radiomics quality score (RQS) assessment. We calculated sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) using random or fixed models with a 95%CI. Forest maps visualized the data, and summary receiver operating characteristic (sROC) curves with the area under the curve (AUC) were generated. Meta-regression and subgroup analyses explored sources of heterogeneity. We compared sensitivity, specificity, PLR, and NLR using the z-test and compared AUC values using the Delong test. RESULTS: Our meta-analysis included 10 studies comprising 1857 patients. For radiomics, the pooled sensitivity, specificity, AUC of sROC, PLR and NLR were 0.84(95%CI: 0.78-0.89), 0.80(95%CI: 0.75-0.85), 0.89(95%CI: 0.86-0.91), 4.28(95%CI: 3.48-5.27) and 0.20(95%CI: 0.14-0.27), respectively, but with significant heterogeneity (I2 = 60.78% for sensitivity, I2 = 55.79% for specificity) and potential publication bias (P = 0.04). The pooled sensitivity, specificity, AUC of sROC, PLR, NLR for non-radiomics were 0.75(95%CI:0.68-0.81), 0.78(95%CI:0.72-0.83), 0.83(95%CI: 0.80-0.86), 3.45(95%CI: 2.68-4.44) and 0.32(95%CI: 0.24-0.41), respectively. There was no significant heterogeneity in this group (I2 = 0% for sensitivity, I2 = 17.27% for specificity). Radiomics showed higher diagnostic accuracy (AUC: 0.89 vs. 0.83, P = 0.0456), higher sensitivity (0.84 vs. 0.75, P = 0.0385) and lower NLR (0.20 vs. 0.32, P = 0.0287). CONCLUSION: The radiomics from preoperative MRI effectively predicts ER of HCC and has higher diagnostic accuracy than non-radiomics. Due to potential publication bias and suboptimal RQS scores in radiomics, these results should be interpreted cautiously.

19.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793649

ABSTRACT

Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.


Subject(s)
Influenza Vaccines , Virion , Animals , Dogs , Madin Darby Canine Kidney Cells , Virion/isolation & purification , Chromatography, Ion Exchange/methods , Virus Cultivation/methods , Orthomyxoviridae/isolation & purification , Cell Culture Techniques/methods
20.
Phys Chem Chem Phys ; 15(18): 6875-8, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23549484

ABSTRACT

p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm(2) V(-1) s(-1) and 2.2 × 10(3), respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL