Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 637
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 43(9): 1722-1739, 2024 May.
Article in English | MEDLINE | ID: mdl-38580775

ABSTRACT

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Subject(s)
Hematopoietic Stem Cells , Megakaryocytes , Animals , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Hematopoiesis/physiology , Mesonephros/embryology , Mesonephros/metabolism , Mesonephros/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , Coculture Techniques
2.
Glycobiology ; 34(6)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38760939

ABSTRACT

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Subject(s)
Enzyme Inhibitors , Fibroblasts , Glycosaminoglycans , Mucopolysaccharidosis I , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/metabolism , Mucopolysaccharidosis I/pathology , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Glycosaminoglycans/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/antagonists & inhibitors , Carbohydrate Epimerases/genetics , Molecular Docking Simulation , Antigens, Neoplasm , DNA-Binding Proteins , Neoplasm Proteins
3.
Mol Imaging ; 23: 15353508241261473, 2024.
Article in English | MEDLINE | ID: mdl-38952401

ABSTRACT

Background: Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives: To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods: TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results: Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion: Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.


Subject(s)
B7-H1 Antigen , Mice, Nude , Animals , B7-H1 Antigen/metabolism , Humans , Mice , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacokinetics , Optical Imaging/methods , Iodine Radioisotopes/chemistry , Neoplasms/diagnostic imaging , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Female , Luminescence
4.
Breast Cancer Res Treat ; 203(3): 429-447, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37882920

ABSTRACT

BACKGROUND AND PURPOSE: The association between overweight/obesity and postmenopausal breast cancer has been proven. However, uncertainty exists regarding the association between physical weight statuses and premenopausal breast cancer subtypes. This study aimed to explore the association of body weight statuses with molecular subtypes of premenopausal breast cancer. METHOD: A systematic search of Medline, PubMed, Embase, and Web of Science was performed. The Newcastle-Ottawa Scale (NOS) and the Joanna Briggs Institute (JBI) Critical Appraisal tools were used to evaluate the quality of the literature. STATA and R software were used to analyze the extracted data. RESULT: The meta-analysis included 35 observational studies with a total of 41,049 premenopausal breast cancer patients. The study showed that the proportion of underweight patients was 4.8% (95% CI = 3.9-5.8%, P = 0.01), overweight was 29% (95%CI = 27.1-30.9%, P < 0.01), obesity was 17.8% (95% CI = 14.9-21.2%, P < 0.0001), and normal weight was 51.6% (95% CI = 46.7-56.5%, P < 0.0001). The pooled results showed that in comparison to the normal weight group, being physically underweight is related to a 1.44-fold risk (OR = 1.44, 95%CI = 1.28-1.63, P < 0.0001) of HER2 + breast cancer. Overweight is related to a 1.16-fold risk (OR = 1.16, 95%CI = 1.06-1.26, P = 0.002) of TNBC and a 16% lower risk (OR = 0.84, 95%CI = 0.75-0.93, P = 0.001) of ER + breast cancer. When compared to underweight/normal weight populations, both overweight (OR = 0.74, 95%CI = 0.56-0.97, P = 0.032) and obesity (OR = 0.70, 95%CI = 0.50-0.98, P = 0.037) can reduce the risk of ER + PR + breast cancer. CONCLUSION: In the premenopausal breast cancer population, the distribution of patients' numbers with different weight statuses was significantly distinct among the various breast cancer subtypes. Additionally, the associations between physical weight statuses and the risk of premenopausal breast cancer subtypes are divergent.


Subject(s)
Breast Neoplasms , Overweight , Female , Humans , Body Mass Index , Breast Neoplasms/etiology , Breast Neoplasms/complications , Obesity/complications , Obesity/epidemiology , Overweight/complications , Overweight/epidemiology , Premenopause , Receptors, Estrogen/analysis , Risk Factors , Thinness/epidemiology , Thinness/complications
5.
Small ; : e2405080, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39073300

ABSTRACT

The design of electrocatalysts for oxygen evolution reaction (OER) remains a limitation of industrial hydrogen production by electrolysis of water. Excellent and stable OER catalysts can be developed by activating lattice oxygen and changing the reaction path. Herein, S and FeOOH on the Co(OH)2 nanoneedle arrays are introduced to construct a heterostructure (S-FeOOH/Co(OH)2/NF) as a proof of concept. Theoretical calculations and experimental suggest that the Co-O-Fe motif formed at the heterogeneous interface with the introduction of FeOOH, inducing electron transfer from Co to Fe, enhancing Co─O covalency and reducing intramolecular charge transfer energy, thereby stimulating direct intramolecular lattice oxygen coupling. Doping of S in FeOOH further accelerates electron transfer, improves lattice oxygen activity, and prevents dissolution of FeOOH. Consequently, the overpotential of S-FeOOH/Co(OH)2/NF is only 199 mV at 10 mA cm-2, and coupled with the Pt/C electrode can be up to 1 A cm-2 under 1.79 V and remain stable for over 120 h in an anion exchange membrane water electrolyzer (AEMWE). This work proposes a strategy for the design of efficient and stable electrocatalysts for industrial water electrolysis and promotes the commercialization of AEMWE.

6.
Cell Commun Signal ; 22(1): 84, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291511

ABSTRACT

BACKGROUND: Alzheimer's disease (AD), affecting many elders worldwide, is characterized by A-beta and tau-related cognitive decline. Accumulating evidence suggests that brain iron accumulation is an important characteristic of AD. However, the function and mechanism of the iron-mediated gut-brain axis on AD is still unclear. METHODS: A Caenorhabditis elegans model with tau-overexpression and a high-Fe diet mouse model of cognitive impairment was used for probiotic function evaluation. With the use of qPCR, and immunoblotting, the probiotic regulated differential expression of AD markers and iron related transporting genes was determined. Colorimetric kits, IHC staining, and immunofluorescence have been performed to explore the probiotic mechanism on the development of gut-brain links and brain iron accumulation. RESULTS: In the present study, a high-Fe diet mouse model was used for evaluation in which cognitive impairment, higher A-beta, tau and phosphorylated (p)-tau expression, and dysfunctional phosphate distribution were observed. Considering the close crosstalk between intestine and brain, probiotics were then employed to delay the process of cognitive impairment in the HFe mouse model. Pediococcus acidilactici (PA), but not Bacillus subtilis (BN) administration in HFe-fed mice reduced brain iron accumulation, enhanced global alkaline phosphatase (AP) activity, accelerated dephosphorylation, lowered phosphate levels and increased brain urate production. In addition, because PA regulated cognitive behavior in HFe fed mice, we used the transgenic Caenorhabditis elegans with over-expressed human p-tau for model, and then PA fed worms became more active and longer lived than E.coli fed worms, as well as p-tau was down-regulated. These results suggest that brain iron accumulation influences AD risk proteins and various metabolites. Furthermore, PA was shown to reverse tau-induced pathogenesis via iron transporters and AP-urate interaction. CONCLUSIONS: PA administration studies demonstrate that PA is an important mediator of tau protein reduction, p-tau expression and neurodegenerative behavior both in Caenorhabditis elegans and iron-overload mice. Finally, our results provide candidates for AP modulation strategies as preventive tools for promoting brain health. Video Abstract.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Pediococcus acidilactici , Mice , Animals , Humans , Aged , Pediococcus acidilactici/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Caenorhabditis elegans/metabolism , Uric Acid , Mice, Transgenic , Alzheimer Disease/metabolism , Iron , Phosphates
7.
Biomacromolecules ; 25(7): 4374-4383, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38825770

ABSTRACT

Biomacromolecular condensates formed via phase separation establish compartments for the enrichment of specific compositions, which is also used as a biological tool to enhance molecule condensation, thereby increasing the efficiency of biological processes. Proteolysis-targeting chimeras (PROTACs) have been developed as powerful tools for targeted protein degradation in cells, offering a promising approach for therapies for different diseases. Herein, we introduce an intrinsically disordered region in the PROTAC (denoted PSETAC), which led to the formation of droplets of target proteins in the cells and increased degradation efficiency compared with PROTAC without phase separation. Further, using a nucleus targeting intrinsically disordered domain, the PSETAC was able to target and degrade nuclear-located proteins. Finally, we demonstrated intracellular delivery of PSETAC using lipid nanoparticle-encapsulated mRNA (mRNA-LNP) for the degradation of the endogenous target protein. This study established the PSETAC mRNA-LNP method as a potentially translatable, safe therapeutic strategy for the development of clinical applications based on PROTAC.


Subject(s)
Proteolysis , RNA, Messenger , Proteolysis/drug effects , Humans , RNA, Messenger/genetics , Nanoparticles/chemistry , Lipids/chemistry , HeLa Cells , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Phase Separation , Liposomes
8.
Inorg Chem ; 63(28): 13127-13135, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38946083

ABSTRACT

Chromium-based metal-organic frameworks (Cr-MOFs) are very attractive in a wide range of applications due to their robustness and high porosity. However, the kinetic inertness of chromium ions results in the synthesis of Cr-MOFs often taking prolonged reaction times, which limit their industrial applications. Herein, we report a novel synthesis strategy based on coordination substitution, which overcomes the kinetic inertness of chromium ions and can synthesize Cr-MOFs in a shorter time. The versatility of this strategy has been demonstrated by producing several known Cr-MOFs, such as TYUT-96Cr, MIL-100Cr, MIL-101Cr, and MIL-53Cr. PXRD, SEM, TEM, 77 K N2 adsorption, and TGA have proved that the Cr-MOFs synthesized using this new strategy have good crystallinity, high porosity, and excellent thermal stability. The synthesis mechanism was investigated using theoretical calculations.

9.
Inorg Chem ; 63(25): 11501-11505, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38842143

ABSTRACT

Nitrous oxide (N2O), as the third largest greenhouse gas in the world, also has great applications in industry, so the purification of N2O from N2 in industrial tail gas is a crucial process for achieving environmental protection and giving full play to its economic value. Based on the polarity difference of N2O and N2, N2O adsorption was researched on DMOF series materials with different polarities and methyl numbers of the ligand. N2O adsorption at 0.1 bar is enhanced, attributed to an increase of the methyl group densities at the benzenedicarboxylate linker. Grand canonical Monte Carlo simulations demonstrate the key role of methyl groups within the pore surface in the preferential N2O affinity. Methyl groups preferentially bind to N2O and thus enhanced low (partial) pressure N2O adsorption and N2O/N2 separation. The result shows that DMOF-TM has the highest N2O adsorption capacity (19.6 cm3/g) and N2O/N2 selectivity (23.2) at 0.1 bar. Breakthrough experiments show that, with an increase of the methyl number, the coadsorption time and retention time also increase, and DMOF-TM has the best N2O/N2 separation performance.

10.
Semin Dial ; 37(3): 259-268, 2024.
Article in English | MEDLINE | ID: mdl-38506151

ABSTRACT

BACKGROUND: Dialytic phosphate removal is a cornerstone of the management of hyperphosphatemia in peritoneal dialysis (PD) patients, but the influencing factors on peritoneal phosphate clearance (PPC) are incompletely understood. Our objective was to explore clinically relevant factors associated with PPC in patients with different PD modality and peritoneal transport status and the association of PPC with mortality. METHODS: This is a cross-sectional and prospective observational study. Four hundred eighty-five PD patients were enrolled and divided into 2 groups according to PPC. All-cause mortality was evaluated after followed-up for at least 3 months. RESULTS: High PPC group showed lower mortality compared with Low PPC group by Kaplan-Meier analysis and log-rank test. Both multivariate linear regression and multivariate logistic regression revealed that high transport status, total effluent dialysate volume per day, continuous ambulatory PD (CAPD), and protein in total effluent dialysate volume appeared to be positively correlated with PPC; body mass index (BMI) and the normalized protein equivalent of total nitrogen appearance (nPNA) were negatively correlated with PPC. Besides PD modality and membrane transport status, total effluent dialysate volume showed a strong relationship with PPC, but the correlation differed among PD modalities. CONCLUSIONS: Higher PPC was associated with lower all-cause mortality risk in PD patients. Higher PPC correlated with CAPD modality, fast transport status, higher effluent dialysate volume and protein content, and with lower BMI and nPNA.


Subject(s)
Hyperphosphatemia , Kidney Failure, Chronic , Peritoneal Dialysis , Phosphates , Humans , Male , Female , Middle Aged , Prospective Studies , Peritoneal Dialysis/mortality , Cross-Sectional Studies , Phosphates/metabolism , Phosphates/analysis , Hyperphosphatemia/etiology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/metabolism , Aged , Peritoneal Dialysis, Continuous Ambulatory/mortality , Dialysis Solutions , Adult
11.
Environ Res ; 258: 119461, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909945

ABSTRACT

Microaerobic sludge bed systems could align with low-energy, reasonable carbon-nitrogen (C/N) ratio, and synchronous removal objectives during wastewater treatment. However, its ability to treat municipal wastewater (MW) with varying low C/N ratio, low NH4+ concentration, along with managing sludge bulking and loss are still unclear. Against this backdrop, this study investigated the performance of an Upflow Microaerobic Sludge Bed Reactor (UMSR) treating MW characterized by varying low C/N ratios and low NH4+ concentrations. The study also thoroughly examined associated sludge bulking and loss, pollutant removal efficiencies, sludge settleability, microbial community structures, functional gene variations, and metabolic pathways. Findings revealed that the effluent NH4+-N concentration gradually decreased to 0 mg/L with a decrease in the C/N ratio, whereas the effluent COD was unaffected by the influent, maintaining a concentration below 50 mg/L. Notably, TN removal efficiency reached 90% when C/N ratio was 3. The decrease in the C/N ratio (C/N ratio was 1) increased microbial community diversity, with abundances of AOB, AnAOB, aerobic denitrifying bacteria, and anaerobic digestion bacteria reaching 8.34%, 0.96%, 5.07%, and 9.01%, respectively. Microorganisms' metabolic pathways significantly shifted, showing increased carbohydrate and cofactor/vitamin metabolism and decreased amino acid metabolism and xenobiotic biodegradation. This study not only provides a solution for the effluent of different pre-capture carbon processes but also demonstrates the UMSR's capability in managing low C/N ratio municipal wastewater and emphasizes the critical role of microbial community adjustments and functional gene variations in enhancing nitrogen removal efficiency.

12.
Childs Nerv Syst ; 40(6): 1901-1917, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630267

ABSTRACT

PURPOSE: Over the past several decades, numerous articles have been published on brainstem tumors. However, there has been limited bibliometric analysis in this field. Therefore, we conducted a bibliometric analysis to elucidate the evolution and current status of brainstem tumor research. METHODS: We retrieved 5525 studies published in English between 1992 and 2023 from the Web of Science Core Collection database. We employed bibliometric tools and VOSviewer to conduct the analysis. RESULTS: We included a total of 5525 publications for further analysis. The annual publications have exhibited steady growth over time. The United States accounted for the highest number of publications and total citations. Among individual researchers, Liwei Zhang had the highest number of publications, while Cynthia Hawkins and Chris Jones shared the most citations, closely followed by Eric Bouffet in this field. The study titled "Diffuse brainstem glioma in children: critical review of clinical trials" stood out as the most cited work in this field. Keyword analysis revealed that immune therapy and epigenetic research are the focal points of this field. CONCLUSIONS: Our bibliometric analysis underscores the enduring significance of brainstem tumors in the realm of neuro-oncology research. The field's hotspots have transitioned from surgery and radiochemotherapy to investigating epigenetic mechanisms and immune therapy.


Subject(s)
Bibliometrics , Brain Stem Neoplasms , Humans , Brain Stem Neoplasms/therapy , Biomedical Research/trends , Biomedical Research/statistics & numerical data
13.
Acta Radiol ; 65(1): 68-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37097830

ABSTRACT

BACKGROUND: Extramural venous invasion (EMVI) is an important prognostic factor of rectal adenocarcinoma. However, accurate preoperative assessment of EMVI remains difficult. PURPOSE: To assess EMVI preoperatively through radiomics technology, and use different algorithms combined with clinical factors to establish a variety of models in order to make the most accurate judgments before surgery. MATERIAL AND METHODS: A total of 212 patients with rectal adenocarcinoma between September 2012 and July 2019 were included and distributed to training and validation datasets. Radiomics features were extracted from pretreatment T2-weighted images. Different prediction models (clinical model, logistic regression [LR], random forest [RF], support vector machine [SVM], clinical-LR model, clinical-RF model, and clinical-SVM model) were constructed on the basis of radiomics features and clinical factors, respectively. The area under the curve (AUC) and accuracy were used to assess the predictive efficacy of different models. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were also calculated. RESULTS: The clinical-LR model exhibited the best diagnostic efficiency with an AUC of 0.962 (95% confidence interval [CI] = 0.936-0.988) and 0.865 (95% CI = 0.770-0.959), accuracy of 0.899 and 0.828, sensitivity of 0.867 and 0.818, specificity of 0.913 and 0.833, PPV of 0.813 and 0.720, and NPV of 0.940 and 0.897 for the training and validation datasets, respectively. CONCLUSION: The radiomics-based prediction model is a valuable tool in EMVI detection and can assist decision-making in clinical practice.


Subject(s)
Adenocarcinoma , Rectal Neoplasms , Humans , Radiomics , Retrospective Studies , Magnetic Resonance Imaging/methods , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/surgery , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/surgery
14.
Ecotoxicol Environ Saf ; 271: 115952, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218109

ABSTRACT

Cigarette smoking is one of the most impactful behavior-related risk factors for multiple cancers including hepatocellular carcinoma (HCC). Nicotine, as the principal component of tobacco, is not only responsible for smoking addiction but also a carcinogen; nevertheless, the underlying mechanisms remain unclear. Here we report that nicotine enhances HCC cancer stemness and malignant progression by upregulating the expression of GC-rich binding factor 2 (GCF2), a gene that was revealed to be upregulated in HCC and whose upregulation predicts poor prognosis, and subsequently activating the Wnt/ꞵ-catenin/SOX2 signaling pathway. We found that nicotine significantly increased GCF2 expression and that silencing of GCF2 reduced nicotine-induced cancer stemness and progression. Mechanistically, nicotine could stabilize the protein level of GCF2, and then GCF2 could robustly activate its downstream Wnt/ß-catenin signaling pathway. Taken together, our results thus suggest that GCF2 is a potential target for a therapeutic strategy against nicotine-promoted HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Nicotine/toxicity , Cell Line, Tumor , Wnt Signaling Pathway/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation
15.
J Adv Nurs ; 80(2): 692-706, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37574763

ABSTRACT

AIMS: To investigate the level of spiritual health in older patients with chronic obstructive pulmonary disease (COPD) from the core dimensions and to explore its associated factors. DESIGN: A cross-sectional study. METHODS: Participants were recruited from four hospitals between September 2020 and June 2021, using a convenience sampling. Older patients with COPD (n = 162) completed the demographic and disease-related information questionnaires, Function Assessment of Chronic Illness Therapy Spiritual Scale, 10-item Connor-Davidson Resilience Scale, General Self-efficacy Scale, Social Support Rating Scale, COPD Assessment Test, 15-item Geriatric Depression Scale and modified Medical Research Council Dyspnea Scale. Descriptive statistics, Pearson and Spearman correlation analyses, t-tests, one-way ANOVA and multiple linear regression models were used. RESULTS: Older patients with COPD have a moderate level of spiritual health. The multiple linear regression analysis showed that psychological resilience, general self-efficacy, social support, symptom burden and monthly income were associated with the core dimensions of spiritual health. CONCLUSION: Chinese older patients with COPD have a moderate level of spiritual health. Psychological resilience, general self-efficacy, social support, monthly income and symptom burden were associated with the core dimensions of spiritual health. IMPACT: This study is the first to investigate the level of spiritual health in older patients with COPD from the core dimensions and to explore its associated factors, providing a basis for developing spiritual intervention programs. Our findings can help us realize that intervention strategies of psychological resilience, general self-efficacy and social support can all be used to enhance spiritual health. Nurses should focus on the spiritual health of older COPD patients with high symptom burden and low monthly income. PATIENT OR PUBLIC CONTRIBUTION: Although we did not directly involve patients and the public because of the COVID-19 pandemic, the results of the study will be disseminated to patients and the public through WeChat and seminars.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Resilience, Psychological , Humans , Aged , Cross-Sectional Studies , Pandemics , Surveys and Questionnaires , Quality of Life/psychology
16.
J Environ Manage ; 354: 120327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359627

ABSTRACT

Sweet sorghum, as a seasonal energy crop, is rich in cellulose and hemicellulose that can be converted into biofuels. This work aims at investigating the effects of synergistic regulation of Pichia anomala and cellulase on ensiling quality and microbial community of sweet sorghum silages as a storage and pretreatment method. Furthermore, the combined pretreatment effects of ensiling and ball milling on sweet sorghum were evaluated by microstructure change and enzymatic hydrolysis. Based on membership function analysis, the combination of P. anomala and cellulase (PA + CE) significantly improved the silage quality by preserving organic components and promoting fermentation characteristics. The bioaugmented ensiling with PA + CE restructured the bacterial community by facilitating Lactobacillus and inhibiting undesired microorganisms by killer activity of P. anomala. The combined bioaugmented ensiling pretreatment with ball milling significantly increased the enzymatic hydrolysis efficiency (EHE) to 71%, accompanied by the increased specific surface area and decreased pore size/crystallinity of sweet sorghum. Moreover, the EHE after combined pretreatment was increased by 1.37 times compared with raw material. Hence, the combined pretreatment was demonstrated as a novel strategy to effectively enhance enzymatic hydrolysis of sweet sorghum.


Subject(s)
Cellulase , Saccharomycetales , Sorghum , Hydrolysis , Sorghum/chemistry , Sorghum/metabolism , Silage/analysis , Silage/microbiology , Cellulase/metabolism , Fermentation
17.
J Sci Food Agric ; 104(11): 6696-6705, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38551359

ABSTRACT

BACKGROUND: Leucine (Leu) is an essential amino acid that facilitates skeletal muscle satellite cell differentiation, yet its mechanism remains underexplored. Sestrin2 (SESN2) serves as a Leu sensor, binding directly to Leu, while ribophorin II (RPN2) acts as a signaling factor in multiple pathways. This study aimed to elucidate Leu's impact on mouse C2C12 cell differentiation and skeletal muscle injury repair by modulating RPN2 expression through SESN2, offering a theoretical foundation for clinical skeletal muscle injury prevention and treatment. RESULTS: Leu addition promoted C2C12 cell differentiation compared to the control, enhancing early differentiation via myogenic determinant (MYOD) up-regulation. Sequencing revealed SESN2 binding to and interacting with RPN2. RPN2 overexpression up-regulated MYOD, myogenin and myosin heavy chain 2, concurrently decreased p-GSK3ß and increased nuclear ß-catenin. Conversely, RPN2 knockdown yielded opposite results. Combining RPN2 knockdown with Leu rescued increased p-GSK3ß and decreased nuclear ß-catenin compared to Leu absence. Hematoxylin and eosin staining results showed that Leu addition accelerated mouse muscle damage repair, up-regulating Pax7, MYOD and RPN2 in the cytoplasm, and nuclear ß-catenin, confirming that the role of Leu in muscle injury repair was consistent with the results for C2C12 cells. CONCLUSION: Leu, bound with SESN2, up-regulated RPN2 expression, activated the GSK3ß/ß-catenin pathway, enhanced C2C12 differentiation and expedited skeletal muscle damage repair. © 2024 Society of Chemical Industry.


Subject(s)
Cell Differentiation , Glycogen Synthase Kinase 3 beta , Leucine , Signal Transduction , beta Catenin , Mice , Animals , beta Catenin/metabolism , beta Catenin/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Leucine/metabolism , Leucine/pharmacology , Cell Line , MyoD Protein/metabolism , MyoD Protein/genetics , Myogenin/metabolism , Myogenin/genetics , Myoblasts/metabolism , Myoblasts/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Sestrins
18.
Angew Chem Int Ed Engl ; 63(4): e202317435, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38059667

ABSTRACT

Nitrous oxide (N2 O), as the third largest greenhouse gas in the world, also has great applications in daily life and industrial production, like anesthetic, foaming agent, combustion supporting agent, N or O atomic donor. The capture of N2 O in adipic acid tail gas is of great significance but remains challenging due to the similarity with CO2 in molecular size and physical properties. Herein, the influence of cation types on CO2 -N2 O separation in zeolite was studied comprehensively. In particular, the inverse adsorption of CO2 -N2 O was achieved by AgZK-5, which preferentially adsorbs N2 O over CO2 , making it capable of trapping N2 O from an N2 O/CO2 mixture. AgZK-5 shows a recorded N2 O/CO2 selectivity of 2.2, and the breakthrough experiment indicates excellent performance for N2 O/CO2 separation. The density functional theory (DFT) calculation shows that Ag+ has stronger adsorption energy with N2 O, and the kinetics of N2 O is slightly faster than that of CO2 on AgZK-5.

19.
Am J Physiol Cell Physiol ; 324(4): C893-C909, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36878848

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-ß peptides (Aß), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aß metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aß in plaques in the AD brain, directly binds and accelerates Aß aggregation, and mediates Aß internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aß clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aß interaction, and the molecules involved in modulating Aß metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aß metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Heparan Sulfate Proteoglycans/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Heparitin Sulfate/metabolism , Brain/metabolism
20.
J Am Chem Soc ; 145(36): 19707-19714, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37578936

ABSTRACT

The susceptibility to moisture of metal-organic frameworks (MOFs) is a critical bottleneck for their wider practical application. Constructing core-shell composites has been postulated as an effective strategy for enhancing moisture resistance, but for fragile MOFs this has rarely been accomplished. We report herein, for the first time, the construction of a customized hydrophobic porous shell, NTU-COF, on the particularly fragile MOF-5 by a "Plug-Socket Anchoring" strategy. Notably, the pore structure of MOF-5 was well maintained, and it could still achieve complete CO2/N2 separation under humid conditions. The homogeneous interface between MOF-5 and NTU-COF has been inspected at atomic resolution by a combination of cryogenic focused ion beam (cryo-FIB) and ultralow-dose (scanning) transmission electron microscope giving profound insight into the mechanism of assembly of the core-shell structure. This work presents a facile strategy for the fabrication of a hydrophobic porous shell for labile MOFs, and provides a general approach for solving the problem of moisture instability of porous materials for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL