Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neuroimage ; 288: 120524, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278428

ABSTRACT

BACKGROUND: Arterial pulsation has been suggested as a key driver of paravascular cerebrospinal fluid flow, which is the foundation of glymphatic clearance. However, whether intracranial arterial pulsatility is associated with glymphatic markers in humans has not yet been studied. METHODS: Seventy-three community participants were enrolled in the study. 4D phase-contrast magnetic resonance imaging (MRI) was used to quantify the hemodynamic parameters including flow pulsatility index (PIflow) and area pulsatility index (PIarea) from 13 major intracerebral arterial segments. Three presumed neuroimaging markers of the glymphatic system were measured: including dilation of perivascular space (PVS), diffusivity along the perivascular space (ALPS), and volume fraction of free water (FW) in white matter. We explored the relationships between PIarea, PIflow, and the presumed glymphatic markers, controlling for related covariates. RESULTS: PIflow in the internal carotid artery (ICA) C2 segment (OR, 1.05; 95 % CI, 1.01-1.10, per 0.01 increase in PI) and C4 segment (OR, 1.05; 95 % CI, 1.01-1.09) was positively associated with the dilation of basal ganglia PVS, and PIflow in the ICA C4 segment (OR, 1.06, 95 % CI, 1.02-1.10) was correlated with the dilation of PVS in the white matter. ALPS was associated with PIflow in the basilar artery (ß, -0.273, p, 0.046) and PIarea in the ICA C2 (ß, -0.239, p, 0.041) and C7 segments (ß, -0.238, p, 0.037). CONCLUSIONS: Intracranial arterial pulsatility was associated with presumed neuroimaging markers of the glymphatic system, but the results were not consistent across different markers. Further studies are warranted to confirm these findings.


Subject(s)
Glymphatic System , White Matter , Humans , Glymphatic System/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging , White Matter/diagnostic imaging , White Matter/pathology , Hemodynamics
2.
J Am Chem Soc ; 146(25): 17414-17427, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865166

ABSTRACT

The high affinity interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin is mediated by a multimotif glycosulfopeptide (GSP) recognition domain consisting of clustered tyrosine sulfates and a Core 2 O-glycan terminated with sialyl LewisX (C2-O-sLeX). These distinct GSP motifs are much more common than previously appreciated within a wide variety of functionally important domains involved in protein-protein interactions. However, despite the potential of GSPs to serve as tools for fundamental studies and prospects for drug discovery, their utility has been limited by the absence of chemical schemes for synthesis on scale. Herein, we report the total synthesis of GSnP-6, an analogue of the N-terminal domain of PSGL-1, and potent inhibitor of P-selectin. An efficient, scalable, hydrogenolysis-free synthesis of C2-O-sLeX-Thr-COOH was identified by both convergent and orthogonal one-pot assembly, which afforded this crucial building block, ready for direct use in solid phase peptide synthesis (SPPS). C2-O-sLeX-Thr-COOH was synthesized in 10 steps with an overall yield of 23% from the 4-O,5-N oxazolidinone thiosialoside donor. This synthesis represents an 80-fold improvement in reaction yield as compared to prior reports, achieving the first gram scale synthesis of SPPS ready C2-O-sLeX-Thr-COOH and enabling the scalable synthesis of GSnP-6 for preclinical evaluation. Significantly, we established that GSnP-6 displays dose-dependent inhibition of venous thrombosis in vivo and inhibits vaso-occlusive events in a human sickle cell disease equivalent microvasculature-on-a-chip system. The insights gained in formulating this design strategy can be broadly applied to the synthesis of a wide variety of biologically important oligosaccharides and O-glycan bearing glycopeptides.


Subject(s)
Glycopeptides , Membrane Glycoproteins , P-Selectin , Glycopeptides/chemical synthesis , Glycopeptides/chemistry , Glycopeptides/pharmacology , P-Selectin/antagonists & inhibitors , P-Selectin/metabolism , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/metabolism , Humans , Animals , Mice
3.
Hum Brain Mapp ; 45(5): e26634, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553856

ABSTRACT

Cerebral small vessel disease (SVD) can disrupt the global brain network and lead to cognitive impairment. Conversely, cognitive reserve (CR) can improve one's cognitive ability to handle damaging effects like SVD, partly by optimizing the brain network's organization. Understanding how SVD and CR collectively influence brain networks could be instrumental in preventing cognitive impairment. Recently, brain redundancy has emerged as a critical network protective metric, providing a nuanced perspective of changes in network organization. However, it remains unclear how SVD and CR affect global redundancy and subsequently cognitive function. Here, we included 121 community-dwelling participants who underwent neuropsychological assessments and a multimodal MRI examination. We visually examined common SVD imaging markers and assessed lifespan CR using the Cognitive Reserve Index Questionnaire. We quantified the global redundancy index (RI) based on the dynamic functional connectome. We then conducted multiple linear regressions to explore the specific cognitive domains related to RI and the associations of RI with SVD and CR. We also conducted mediation analyses to explore whether RI mediated the relationships between SVD, CR, and cognition. We found negative correlations of RI with the presence of microbleeds (MBs) and the SVD total score, and a positive correlation of RI with leisure activity-related CR (CRI-leisure). RI was positively correlated with memory and fully mediated the relationships between the MBs, CRI-leisure, and memory. Our study highlights the potential benefits of promoting leisure activities and keeping brain redundancy for memory preservation in older adults, especially those with SVD.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Cognitive Reserve , Humans , Aged , Middle Aged , Cognition , Brain/diagnostic imaging , Cognitive Dysfunction/psychology , Magnetic Resonance Imaging , Cerebral Small Vessel Diseases/complications
4.
J Magn Reson Imaging ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329184

ABSTRACT

BACKGROUND: Vascular degeneration is an important cause of brain damage in aging. Assessing the functional properties of the cerebral vascular system may aid early diagnosis and prevention. PURPOSE: To investigate the relationships between potential vascular functional markers and vascular risks, brain parenchymal damage, and cognition. STUDY TYPE: Retrospective. SUBJECTS: Two hundred two general community subjects (42-80 years, males/females: 127/75). FIELD STRENGTH/SEQUENCE: 3 T, spin echo T1W/T2W/FLAIR, resting-state functional MRI with an echo-planar sequence (rsfMRI), pseudo-continuous arterial spin labeling (pCASL) with a three-dimensional gradient-spin echo sequence. ASSESSMENT: Cerebral blood flow (CBF) in gray matter calculated using pCASL, blood transit times calculated using rsfMRI, and the SD of internal carotid arteries signal (ICAstd ) calculated using rsfMRI; visual assessment for lacunes; quantification of white matter hyperintensity volume; permutation test for quality control; collection of demographic and clinical data, Montreal Cognitive Assessment, Mini-Mental State Examination. STATISTICAL TESTS: Kolmogorov-Smirnov test; Spearman rank correlation analysis; Multivariable linear regression analysis controlling for covariates; The level of statistical significance was set at P < 0.05. RESULTS: Age was negatively associated with ICAstd (ß = -0.180). Diabetes was associated with longer blood transit time from large arteries to capillary bed (ß = 0.185, adjusted for age, sex, and intracranial volume). Larger ICAstd was associated with less presence of lacunes (odds ratio: 0.418, adjusted for age and sex). Higher gray matter CBF (ß = 0.154) and larger ICAstd (ß = 0.136) were associated with better MoCA scores (adjusted for age, sex, and education). DATA CONCLUSION: Prolonged blood transit time, decreased ICAstd , and diminished CBF were associated with vascular dysfunction and cognitive impairment. They may serve as vascular functional markers in future studies. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.

5.
Mol Psychiatry ; 28(4): 1557-1570, 2023 04.
Article in English | MEDLINE | ID: mdl-36750736

ABSTRACT

Dysregulated neurite outgrowth and synapse formation underlie many psychiatric disorders, which are also manifested by wolfram syndrome (WS). Whether and how the causative gene WFS1 deficiency affects synapse formation remain elusive. By mirroring human brain development with cerebral organoids, WFS1-deficient cerebral organoids not only recapitulate the neuronal loss in WS patients, but also exhibit significantly impaired synapse formation and function associated with reduced astrocytes. WFS1 deficiency in neurons autonomously delays neuronal differentiation with altered expressions of genes associated with psychiatric disorders, and impairs neurite outgrowth and synapse formation with elevated cytosolic calcium. Intriguingly, WFS1 deficiency in astrocytes decreases the expression of glutamate transporter EAAT2 by NF-κB activation and induces excessive glutamate. When co-cultured with wildtype neurons, WFS1-deficient astrocytes lead to impaired neurite outgrowth and increased cytosolic calcium in neurons. Importantly, disrupted synapse formation and function in WFS1-deficient cerebral organoids and impaired neurite outgrowth affected by WFS1-deficient astrocytes are efficiently reversed with Riluzole treatment, by restoring EAAT2 expression in astrocytes. Furthermore, Riluzole rescues the depressive-like behavior in the forced swimming test and the impaired recognition and spatial memory in the novel object test and water maze test in Wfs1 conditional knockout mice. Altogether, our study provides novel insights into how WFS1 deficiency affects synapse formation and function, and offers a strategy to treat this disease.


Subject(s)
Human Embryonic Stem Cells , Wolfram Syndrome , Animals , Mice , Humans , Wolfram Syndrome/drug therapy , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism , Riluzole/pharmacology , Riluzole/metabolism , Calcium/metabolism , Human Embryonic Stem Cells/metabolism , Neurons/metabolism , Mice, Knockout , Synapses/metabolism
6.
Neurobiol Dis ; 189: 106354, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977431

ABSTRACT

BACKGROUND: Cases with the limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy neuropathologic change (LATE-NC), Alzheimer's disease (AD), and mixed AD+TDP-43 pathology (AD+LATE-NC) share similar symptoms, which makes it a challenge for accurate diagnosis. Exploring the patterns of gray matter structural covariance networks (SCNs) in these three types may help to clarify the underlying mechanism and provide a basis for clinical interventions. METHODS: We included ante-mortem MRI data of 10 LATE-NC, 39  AD, and 25  AD+LATE-NC from the ADNI autopsy sample. We used four regions of interest (left posterior cingulate cortex, right entorhinal cortex, frontoinsular and dorsolateral prefrontal cortex) to anchor the default mode network (DMN), salience network (SN), and executive control network (ECN). Finally, we assessed the SCN alternations using a multi-regression model-based linear-interaction analysis. RESULTS: Cases with autopsy-confirmed LATE-NC and AD showed increased structural associations involving DMN, ECN, and SN. Cases with AD+LATE-NC showed increased structural association within DMN while decreased structural association between DMN and ECN. The volume of peak clusters showed significant associations with cognition and AD pathology. CONCLUSIONS: This study showed different SCN patterns in the cases with LATE-NC, AD, and AD+LATE-NC, and indicated the network disconnection mechanism underlying these three neuropathological progressions. Further, SCN may serve as an effective biomarker to distinguish between different types of dementia.


Subject(s)
Alzheimer Disease , Gray Matter , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Magnetic Resonance Imaging , Autopsy , DNA-Binding Proteins
7.
Hum Brain Mapp ; 44(1): 119-130, 2023 01.
Article in English | MEDLINE | ID: mdl-35993678

ABSTRACT

Concomitant neuropsychiatric symptoms (NPS) are associated with accelerated Alzheimer's disease (AD) progression. Identifying multimodal brain imaging patterns associated with NPS may help understand pathophysiology correlates AD. Based on the AD continuum, a supervised learning strategy was used to guide four-way multimodal neuroimaging fusion (Amyloid, Tau, gray matter volume, brain function) by using NPS total score as the reference. Loadings of the identified multimodal patterns were compared across the AD continuum. Then, regression analyses were performed to investigate its predictability of longitudinal cognition performance. Furthermore, the fusion analysis was repeated in the four NPS subsyndromes. Here, an NPS-associated pathological-structural-functional covaried pattern was observed in the frontal-subcortical limbic circuit, occipital, and sensor-motor region. Loading of this multimodal pattern showed a progressive increase with the development of AD. The pattern significantly correlates with multiple cognitive domains and could also predict longitudinal cognitive decline. Notably, repeated fusion analysis using subsyndromes as references identified similar patterns with some unique variations associated with different syndromes. Conclusively, NPS was associated with a multimodal imaging pattern involving complex neuropathologies, which could effectively predict longitudinal cognitive decline. These results highlight the possible neural substrate of NPS in AD, which may provide guidance for clinical management.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Brain , Gray Matter/pathology , Neuroimaging
8.
BMC Med ; 21(1): 136, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37024948

ABSTRACT

BACKGROUND: Migraine is one of the world's most prevalent and disabling diseases. Despite huge advances in neuroimaging research, more valuable neuroimaging markers are still urgently needed to provide important insights into the brain mechanisms that underlie migraine symptoms. We therefore aim to investigate the regional iron deposition in subcortical nuclei of migraineurs as compared to controls and its association with migraine-related pathophysiological assessments. METHODS: A total of 200 migraineurs (56 chronic migraine [CM], 144 episodic migraine [EM]) and 41 matched controls were recruited. All subjects underwent MRI and clinical variables including frequency/duration of migraine, intensity of migraine, 6-item Headache Impact Test (HIT-6), Migraine Disability Assessment (MIDAS), and Pittsburgh Sleep Quality Index (PSQI) were recorded. Quantitative susceptibility mapping was employed to quantify the regional iron content in subcortical regions. Associations between clinical variables and regional iron deposition were studied as well. RESULTS: Increased iron deposition in the putamen, caudate, and nucleus accumbens (NAC) was observed in migraineurs more than controls. Meanwhile, patients with CM had a significantly higher volume of iron deposits compared to EM in multiple subcortical nuclei, especially in NAC. Volume of iron in NAC can be used to distinguish patients with CM from EM with a sensitivity of 85.45% and specificity of 71.53%. As the most valuable neuroimaging markers in all of the subcortical nuclei, higher iron deposition in NAC was significantly associated with disease progression, and higher HIT-6, MIDAS, and PSQI. CONCLUSIONS: These findings provide evidence that iron deposition in NAC may be a biomarker for migraine chronicity and migraine-related dysfunctions, thus may help to understand the underlying vascular and neural mechanisms of migraine. TRIAL REGISTRATION: ClinicalTrials.gov, number NCT04939922.


Subject(s)
Migraine Disorders , Nucleus Accumbens , Humans , Brain , Disease Progression , Iron , Migraine Disorders/diagnostic imaging
9.
J Magn Reson Imaging ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737474

ABSTRACT

BACKGROUND: White matter (WM) degeneration is a key feature of Alzheimer's disease (AD). However, the underlying mechanism remains unclear. PURPOSE: To investigate how amyloid-ß (Aß), tau, and small vascular disease (SVD) jointly affect WM degeneration in subjects along AD continuum. STUDY TYPE: Retrospective. SUBJECTS: 152 non-demented participants (age: 55.8-91.6, male/female: 66/86) from the ADNI database were included, classified into three groups using the A (Aß)/T (tau)/N pathological scheme (Group 1: A-T-; Group 2: A+T-; Group 3: A+T+) based on positron emission tomography data. FIELD STRENGTH/SEQUENCE: 3T; T1-weighted images, T2-weighted fluid-attenuated inversion recovery images, T2*-weighted images, diffusion-weighted spin-echo echo-planar imaging sequence (54 diffusion directions). ASSESSMENT: Free-water diffusion model (generated parameters: free water, FW; tissue fractional anisotropy, FAt; tissue mean diffusivity, MDt); SVD total score; Neuropsychological tests. STATISTICAL TESTS: Linear regression analysis was performed to investigate the independent contribution of AD (Aß and tau) and SVD pathologies to diffusion parameters in each fiber tract, first in the entire population and then in each subgroup. We also investigated associations between diffusion parameters and cognitive functions. The level of statistical significance was set at p < 0.05 (false discovery rate corrected). RESULTS: In the entire population, we found that: 1) Increased FW was significantly associated with SVD and tau, while FAt and MDt were significantly associated with Aß and tau; 2) The spatial pattern of fiber tracts related to a certain pathological marker is consistent with the known distribution of that pathology; 3) Subgroup analysis showed that Group 2 and 3 had more alterations of FAt and MDt associated with Aß and tau; 4) Diffusion imaging indices showed significant associations with cognitive score in all domains except memory. DATA CONCLUSION: WM microstructural injury was associated with both AD and SVD pathologies, showing compartment-specific, tract-specific, and stage-specific WM patterns. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.

10.
Neuroimage ; 264: 119683, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36243270

ABSTRACT

Brain iron deposition is a promising marker for human brain health, providing insightful information for understanding aging as well as neurodegenerations, e.g., Parkinson's disease (PD) and Alzheimer's disease (AD). To comprehensively evaluate brain iron deposition along with aging, PD-related neurodegeneration, from prodromal PD (pPD) to clinical PD (cPD), and AD-related neurodegeneration, from mild cognitive impairment (MCI) to AD, a total of 726 participants from July 2013 to December 2020, including 100 young adults, 189 old adults, 184 pPD, 171 cPD, 31 MCI and 51 AD patients, were included. Quantitative susceptibility mapping data were acquired and used to quantify regional magnetic susceptibility, and the resulting spatial standard deviations were recorded. A general linear model was applied to perform the inter-group comparison. As a result, relative to young adults, old adults showed significantly higher iron deposition with higher spatial variation in all of the subcortical nuclei (p < 0.01). pPD showed a high spatial variation of iron distribution in the subcortical nuclei except for substantia nigra (SN); and iron deposition in SN and red nucleus (RN) were progressively increased from pPD to cPD (p < 0.01). AD showed significantly higher iron deposition in caudate and putamen with higher spatial variation compared with old adults, pPD and cPD (p < 0.01), and significant iron deposition in SN compared with old adults (p < 0.01). Also, linear regression models had significances in predicting motor score in pPD and cPD (Rmean = 0.443, Ppermutation = 0.001) and cognition score in MCI and AD (Rmean = 0.243, Ppermutation = 0.037). In conclusion, progressive iron deposition in the SN and RN may characterize PD-related neurodegeneration, namely aging to cPD through pPD. On the other hand, extreme iron deposition in the caudate and putamen may characterize AD-related neurodegeneration.


Subject(s)
Alzheimer Disease , Parkinson Disease , Young Adult , Humans , Parkinson Disease/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Iron , Brain Mapping/methods
11.
J Am Chem Soc ; 144(34): 15885-15893, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35976695

ABSTRACT

Binding via reversible covalent bond formation presents a novel and powerful mechanism to enhance the potency of synthetic inhibitors for therapeutically important proteins. Work on this front has yielded the anticancer drug bortezomib as well as the antisickling drug voxelotor. However, the rational design of reversible covalent inhibitors remains difficult even when noncovalent inhibitors are available as a scaffold. Herein, we report chemically modified phage libraries, both linear and cyclic, that incorporate 2-acetylphenylboronic acid (APBA) as a warhead to bind lysines via reversible iminoboronate formation. To demonstrate their utility, these APBA-presenting phage libraries were screened against sortase A of Staphylococcus aureus, as well as the spike protein of SARS-CoV-2. For both protein targets, peptide ligands were readily identified with single-digit micromolar potency and excellent specificity, enabling live-cell sortase inhibition and highly sensitive spike protein detection, respectively. Furthermore, our structure-activity studies unambiguously demonstrate the benefit of the APBA warhead for protein binding. Overall, this contribution shows for the first time that reversible covalent inhibitors can be developed via phage display for a protein of interest. The phage display platform should be widely applicable to proteins including those involved in protein-protein interactions.


Subject(s)
Bacteriophages , COVID-19 , Bacteriophages/metabolism , Humans , Ligands , Lysine/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
12.
Neurobiol Dis ; 170: 105755, 2022 08.
Article in English | MEDLINE | ID: mdl-35577066

ABSTRACT

BACKGROUND: Glymphatic dysfunction may contribute to the accumulation of Alzheimer's disease (AD) pathologies. Conversely, AD pathologic change might also cause neuroinflammation and aggravate glymphatic dysfunction, forming a loop that accelerates AD progression. In vivo validations are needed to confirm their relationships. METHODS: In this study, we included 144 cognitively normal participants with AD pathological biomarker data (baseline CSF Aß1-42, T-Tau, P-Tau181; plasma P-Tau181 at baseline and at least one follow-up) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Each subject had completed structural MRI scans. Among them, 117 subjects have available neuroinflammatory biomarker (soluble triggering receptor expressed on myeloid cells 2 (sTREM2), and 123 subjects have completed two times [18F]-florbetapir PET. The enlarged PVS (EPVS) visual rating scores in basal ganglia (BG) and centrum semiovale (CS) were assessed on T1-weighted images to reflect glymphatic dysfunction. Intracranial volume and white matter hyperintensities (WMH) volume were also calculated for further analysis. We performed stepwise linear regression models and mediation analyses to estimate the association between EPVS severity, sTREM2, and AD biomarkers. RESULTS: CS-EPVS degree was associated with CSF sTREM2, annual change of plasma P-tau181 and total WMH volume, whereas BG-EPVS severity was associated with age, gender and intracranial volume. The sTREM2 mediated the association between CSF P-tau181 and CS-EPVS. CONCLUSION: Impaired glymphatic dysfunction could contribute to the accumulation of pathological tau protein. The association between tauopathy and glymphatic dysfunction was mediated by the microglia inflammatory process. These findings may provide evidence for novel treatment strategies of anti-neuroinflammation therapy in the early stage.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Biomarkers , Humans , Inflammation , Microglia/metabolism , tau Proteins
13.
Eur J Neurosci ; 56(12): 6227-6238, 2022 12.
Article in English | MEDLINE | ID: mdl-36342704

ABSTRACT

Recent studies have shown that in the preclinical phase of Alzheimer's disease (AD), subtle cognitive changes can be detected using sensitive neuropsychological measures, and have proposed the concept of objectively-defined subtle cognitive decline (Obj-SCD). We aimed to assess the functional alteration of hippocampal subfields in individuals with Obj-SCD and its association with cognition and pathological biomarkers. Forty-two participants with cognitively normal (CN), 29 with Obj-SCD, and 55 with mild cognitive impairment (MCI) were retrospectively collected from the ADNI database. Neuropsychological performance, functional MRI, and cerebrospinal fluid (CSF) data were obtained. We calculated the seed-based functional connectivity (FC) of hippocampal subfields (cornu ammonis1 [CA1], CA2/3/dentate gyrus [DG], and subiculum) with whole-brain voxels. Additionally, we analyzed the correlation between FC values of significantly altered regions and neuropsychological performance and CSF biomarkers. The Obj-SCD group showed lower FC between left CA1-CA2/3/DG and right thalamus and higher FC between right subiculum and right superior parietal gyrus (SPG) compared with the CN and MCI groups. In the Obj-SCD group, FC values between left CA2/3/DG and right thalamus were positively associated with Auditory Verbal Learning Test (AVLT) recognition (r = 0.395, p = 0.046) and CSF Aß1-42 levels (r = 0.466, p = 0.019), and FC values between left CA1 and right thalamus were positively correlated with CSF Aß1-42 levels (r = 0.530, p = 0.006). Taken together, dysfunction in CA1-CA2/3/DG subregions suggests subtle cognitive impairment and AD-specific pathological changes in individuals with Obj-SCD. Additionally, increased subiculum connectivity may indicate early functional compensation for subtle cognitive changes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Retrospective Studies , Cognitive Dysfunction/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/pathology , Alzheimer Disease/cerebrospinal fluid , Magnetic Resonance Imaging , Cognition , Biomarkers/cerebrospinal fluid
14.
J Magn Reson Imaging ; 54(4): 1326-1336, 2021 10.
Article in English | MEDLINE | ID: mdl-33998738

ABSTRACT

BACKGROUND: Perivascular spaces (PVSs) are important component of the brain glymphatic system. While visual rating has been widely used to assess PVS, computational measures may have higher sensitivity for capturing PVS characteristics under disease conditions. PURPOSE: To compute quantitative and morphological PVS features and to assess their associations with vascular risk factors and cerebral small vessel disease (CSVD). STUDY TYPE: Prospective. POPULATION: One hundred sixty-one middle-aged/later middle-aged subjects (age = 60.4 ± 7.3). SEQUENCE: 3D T1-weighted, T2-weighted and T2-FLAIR sequences, and susceptibility-weighted multiecho gradient-echo sequence on a 3 T scanner. ASSESSMENT: Automated PVS segmentation was performed on sub-millimeter T2-weighted images. Quantitative and morphological PVS features were calculated in white matter (WM) and basal ganglia (BG) regions, including volume, count, size, length (Lmaj ), width (Lmin ), and linearity. Visual PVS scores were also acquired for comparison. STATISTICAL TESTS: Simple and multiple linear regression analyses were used to explore the associations among variables. RESULTS: WM-PVS visual score and count were associated with hypertension (ß = 0.161, P < 0.05; ß = 0.193, P < 0.05), as were BG-PVS rating score, volume, count and Lmin (ß = 0.197, P < 0.05; ß = 0.170, P < 0.05; ß = 0.200, P < 0.05; ß = 0.172, P < 0.05). WM-PVS size was associated with diabetes (ß = 0.165, P < 0.05). WM-PVS and BG-PVS were associated with CSVD markers, especially white matter hyperintensities (WMHs) (P < 0.05). Multiple regression analysis showed that WM/BG-PVS quantitative measures were widely associated with vascular risk factors and CSVD markers (P < 0.05). Morphological measures were associated with WMH severity in WM region and also associated with lacunes and microbleeds (P < 0.05) in BG region. DATA CONCLUSION: These novel PVS measures may capture mild PVS alterations driven by different pathologies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Cerebral Small Vessel Diseases , White Matter , Aged , Cerebral Small Vessel Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged , Prospective Studies , Risk Factors , White Matter/diagnostic imaging
15.
Cereb Cortex ; 30(11): 5863-5873, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32537637

ABSTRACT

During the progression of Alzheimer's disease (AD), neuropathology may propagate transneuronally, cause disruption in memory circuit, and lead to memory impairment. However, there is a lack of in vivo evidence regarding this process. Thus, we aim to simulate and observe the progression of neuropathology in AD continuum. We included cognitively normal (CN), mild cognitive impairments (MCI), and AD subjects, and further classified them using the A/T/N scheme (Group 0: CN, A - T-; Group 1: CN, A + T-; Group 2: CN, A + T+; Group 3: MCI, A + T+; Group 4: AD, A + T+). We investigated alterations of three core memory circuit structures: hippocampus (HP) subfields volume, cingulum-angular bundles (CAB) fiber integrity, and precuneus cortex volume. HP subfields volume showed the trend of initially increased and then decreased (starting from Group 2), while precuneus volume decreased in Groups 3 and 4. The CAB integrity degenerated in Groups 3 and 4 and aggravated with higher disease stages. Further, memory circuit impairments were correlated with neuropathology biomarkers and memory performance. Conclusively, our results demonstrated a pattern of memory circuit impairments along with AD progression: starting from the HP, then propagating to the downstream projection fiber tract and cortex. These findings support the tau propagation theory to some extent.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Memory Disorders/pathology , Neural Pathways/pathology , Neuroimaging/methods , Aged , Alzheimer Disease/complications , Disease Progression , Female , Humans , Male , Memory Disorders/etiology , Middle Aged
16.
Addict Biol ; 26(2): e12919, 2021 03.
Article in English | MEDLINE | ID: mdl-32436626

ABSTRACT

The striatum is the critical area of reward processing and has been repeatedly linked to nicotine addiction. However, it remains unclear whether different smoking cessation outcomes (relapse or not) are associated with different functional connectivity changes of the striatum during smoking cessation treatment. A total of 30 treatment-seeking smokers were recruited in the study and underwent magnetic resonance imaging (MRI) scans immediately before and after a 12-week treatment with varenicline. After the 12-week treatment with varenicline, 14 subjects relapsed to smoking (relapsers), whereas 16 not relapsed (nonrelapsers). Changes in resting-state functional connectivity (rsFC) across groups and visits were assessed using repeated measures analysis of covariance (ANCOVA). Significant interaction effects were detected: (1) between left nucleus accumbens (NAc) and left orbitofrontal cortex (OFC), insula, inferior frontal gyrus (IFG), and bilateral precuneus; (2) between right NAc and left insula, IFG, and bilateral dorsolateral prefrontal cortex (DLPFC); and (3) between bilateral putamen and left precuneus. Post hoc region-of-interest analyses in brain areas showing interaction effects indicated significantly decreased rsFC after treatment compared with before treatment in relapsers but opposite longitudinal changes in nonrelapers. These novel findings suggest that increased striatal rsFC is associated with improved smoking cessation outcomes. These striatal functional circuits may serve as potential therapeutic targets for more efficacious treatment of nicotine addiction.


Subject(s)
Corpus Striatum/pathology , Smoking Cessation , Tobacco Use Disorder/pathology , Adult , Brain/pathology , Corpus Striatum/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Recurrence , Smoking Cessation Agents/therapeutic use , Tobacco Use Disorder/diagnostic imaging , Tobacco Use Disorder/drug therapy , Varenicline/therapeutic use
17.
J Cell Mol Med ; 24(10): 5751-5757, 2020 05.
Article in English | MEDLINE | ID: mdl-32285549

ABSTRACT

The aim of this study was to investigate in vitro magnetic resonance imaging (MRI) of PDAC using ENO1-targeted superparamagnetic iron oxide nanoparticles and xenograft models. Expression level and location of ENO1 protein in pancreatic cancer cell lines of CFPAC-1 and MiaPaCa-2 were detected by Western blotting, flow cytometry and confocal microscopy. Dex-g-PCL/SPIO nanoparticles targeting ENO1 were constructed with ENO1 antibody and characterized by MRI. In addition, ENO1-Dex-g-PCL/SPIO nanoparticles were tested to assess their efficacy on the detection of PDAC using in vitro and in vivo MRI. The results showed that ENO1 was expressed in both human PDAC cell lines of CFPAC-1 and MiaPaCa-2, demonstrating that the localization of cytoplasm and membrane was dominant. It was confirmed that ENO1 antibody was connected to the SPIO surface in ENO1-Dex-g-PCL/SPIO nanoparticles. The nanoparticles had satisfactory superparamagnetism and significantly enhance the detection of PDAC by in vivo and in vitro MRI. In conclusion, ENO1 can serve as a membrane protein expressed on human PDAC cell lines. ENO1-targeted SPIO nanoparticles using ENO1 antibody can increase the efficiency of detection of PDAC by in vitro and in vivo MRI.


Subject(s)
Biomarkers, Tumor/metabolism , DNA-Binding Proteins/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Resonance Imaging , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/diagnosis , Phosphopyruvate Hydratase/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , Dextrans/chemistry , Humans , Magnetic Iron Oxide Nanoparticles/ultrastructure , Male , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/pathology , Polyesters/chemistry
18.
Angew Chem Int Ed Engl ; 59(34): 14246-14250, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32437040

ABSTRACT

We report a novel conjugation of N-terminal cysteines (NCys) that proceeds with fast kinetics and exquisite selectivity, thereby enabling facile modification of NCys-bearing proteins in complex biological milieu. This new NCys conjugation proceeds via a thiazolidine boronate (TzB) intermediate that results from fast (k2 : ≈5000 m-1 s-1 ) and reversible conjugation of NCys with 2-formylphenylboronic acid (FPBA). We designed a FPBA derivative that upon TzB formation elicits intramolecular acyl transfer to give N-acyl thiazolidines. In contrast to the quick hydrolysis of TzB, the N-acylated thiazolidines exhibit robust stability under physiologic conditions. The utility of the TzB-mediated NCys conjugation is demonstrated by rapid and non-disruptive labeling of two enzymes. Furthermore, applying this chemistry to bacteriophage allows facile chemical modification of phage libraries, which greatly expands the chemical space amenable to phage display.


Subject(s)
Boronic Acids/chemistry , Cysteine/chemistry , Thiazolidines/chemistry , Acylation , Electrophoresis, Polyacrylamide Gel , Hydrolysis , Kinetics
19.
Org Biomol Chem ; 17(24): 5908-5912, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31145403

ABSTRACT

We describe the biocompatible conjugation of the Tris base to 2-formyl and 2-acetylphenylboronic acid (abbreviated as 2-FPBA and 2-APBA respectively), which have emerged as a versatile chemotype for fast biocompatible conjugation reactions. Tris base was found to react with 2-FPBA/APBA to give oxazolidinoboronate (OzB) complexes, analogous to the thiazolidinoboronate (TzB) and imidazolidinoboronate (IzB) complex formation that we recently reported. The Tris conjugations proceed well in complex biological media, and in contrast to the TzB/IzB complexes, the Tris conjugates exhibit superior kinetic stability (dissociation over days) as well as chemical stability against oxidation. We demonstrate the utility of such conjugation chemistries via a small molecule-induced peptide cyclization in blood serum.


Subject(s)
Biocompatible Materials/chemistry , Boronic Acids/chemical synthesis , Tromethamine/chemistry , Boronic Acids/chemistry , Kinetics , Molecular Structure
20.
J Am Chem Soc ; 140(19): 6137-6145, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29701966

ABSTRACT

Antibiotic resistance of bacterial pathogens poses an increasing threat to the wellbeing of our society and urgently calls for new strategies for infection diagnosis and antibiotic discovery. The antibiotic resistance problem at least partially arises from extensive use of broad-spectrum antibiotics. Ideally, for the treatment of infection, one would like to use a narrow-spectrum antibiotic that specifically targets and kills the disease-causing strain. This is particularly important considering the commensal bacterial species that are beneficial and sometimes even critical to the health of a human being. In this contribution, we describe a phage display platform that enables rapid identification of peptide probes for specific bacterial strains. The phage library described herein incorporates 2-acetylphenylboronic acid moieties to elicit dynamic covalent binding to the bacterial cell surface. Screening of the library against live bacterial cells yields submicromolar and highly specific binders for clinical strains of Staphylococcus aureus and Acinetobacter baumannii that display antibiotic resistance. We further show that the identified peptide probes can be readily converted to bactericidal agents that deliver generic toxins to kill the targeted bacterial strain with high specificity. The phage display platform described here is applicable to a wide array of bacterial strains, paving the way to facile diagnosis and development of strain-specific antibiotics.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Peptides/chemistry , Staphylococcus aureus/drug effects , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/cytology , Anti-Bacterial Agents/chemistry , Binding Sites/drug effects , Boranes/chemistry , Boronic Acids , Humans , Microbial Sensitivity Tests , Molecular Probes/chemistry , Molecular Structure , Staphylococcus aureus/chemistry , Staphylococcus aureus/cytology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL