Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Inorg Chem ; 62(12): 4990-4998, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36921355

ABSTRACT

Photochromic viologen-based materials have emerged as one of the most promising candidates for the development of X-ray light detection applications, including medical diagnosis and treatment, environmental radiation inspection, and industrial crack detection. However, the design and construction of low-dose X-ray-sensitive complexes remains an immense challenge, especially for the in-depth dissection of their response mechanisms. Herein, by using N,N'-4,4'-bipyridiniodipropionate (CV) as functional sensitive structural units and cadmium as heavy atoms, two cadmium-viologen complexes with one-dimensional chained structures, namely, [Cd2Cl4(CV)(H2O)2]n (1) and [CdBr2(CV)]n (2), have been constructed, which exhibit a remarkable and selective photochromic response to low-dose X-ray radiation detection. Compound 1 is visually sensitive to both X-ray and UV light due to the more accessible photoinduced electron transfer (ET) pathways, while compound 2 only shows a slight color-changing process in response to UV light, in conformity with UV-vis absorbance analyses and kinetic studies. Surprisingly, compound 2 has longer ET pathways than 1, but not in response to high-energy X-ray light, seeming to contradict the previous phenomena. On further analysis, the key point in achieving X-ray-sensitive behavior should be a good balance among the electron donor-acceptor distance, intermolecular interaction, and X-ray absorbing capacity, as verified by density functional theory (DFT) and X-ray absorption strength calculations, X-ray photoelectron spectra, electron paramagnetic resonance measurements, and independent gradient model analysis. In particular, compound 1 is unprecedentedly sensitive to soft X-ray radiation, accompanied by an X-ray detection limit of as low as 2.91 Gy. These findings push forward the further development of low-dose X-ray sensing materials.

2.
Aging (Albany NY) ; 16(2): 1581-1604, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38240702

ABSTRACT

Basement membrane plays an important role in tumor invasion and metastasis, which is closely related to prognosis. However, the prognostic value and biology of basement membrane genes (BMGs) in prostate cancer (PCa) remain unknown. In the TCGA training set, we used differentially expressed gene analysis, protein-protein interaction networks, univariate and multivariate Cox regression, and least absolute shrinkage and selection operator regression to construct a basement membrane-related risk model (BMRM) and validated its effectiveness in the MSKCC validation set. Furthermore, the accurate nomogram was constructed to improve clinical applicability. Patients with PCa were divided into high-risk and low-risk groups according to the optimal cut-off value of the basement membrane-related risk score (BMRS). It was found that BMRS was significantly associated with RFS, T-stage, Gleason score, and tumor microenvironmental characteristics in PCa patients. Further analysis showed that the model grouping was closely related to tumor immune microenvironment characteristics, immune checkpoint inhibitors, and chemotherapeutic drug sensitivity. In this study, we developed a new BMGs-based prognostic model to determine the prognostic value of BMGs in PCa. Finally, we confirmed that THBS2, a key gene in BMRM, may be an important link in the occurrence and progression of PCa. This study provides a novel perspective to assess the prognosis of PCa patients and provides clues for the selection of future personalized treatment regimens.


Subject(s)
Prostatic Neoplasms , Tumor Microenvironment , Male , Humans , Basement Membrane , Tumor Microenvironment/genetics , Prognosis , Prostatic Neoplasms/genetics , Nomograms
3.
Adv Sci (Weinh) ; : e2310131, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922788

ABSTRACT

N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.

4.
Cancer Lett ; 579: 216464, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37879429

ABSTRACT

The suppressor of variegation enhancer of zeste-trithorax (SET) domain methyltransferases have been reported to function as key regulators in multiple tumor types by catalyzing histone lysine methylation. Nevertheless, our understanding on the role of these lysine methyltransferases, including SETD4, in prostate cancer (PCa) remains limited. Hence, the specific role of SETD4 in PCa was investigated in this study. The expression of SETD4 in PCa cells and tissue samples was downregulated in PCa cells and tissue specimens, and decreased SETD4 expression led to inferior clinicopathological characteristics in patients with PCa. knockdown of SETD4 facilitated the proliferation of PCa cells and accelerated cell cycle progression. Mechanistically, SETD4 repressed NUPR1 transcription by methylating H3K27 to generate H3K27me3, subsequently inactivated Akt pathway and impeded the tumorigenesis of PCa. Our results highlight that SETD4 prevents the development of PCa by catalyzing the methylation of H3K27 and suppressing NUPR1 transcription, subsequently inactivating the Akt signaling pathway. The findings suggest the potential application of SETD4 in PCa prognosis and therapeutics.


Subject(s)
Histones , Prostatic Neoplasms , Humans , Male , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation , Histones/genetics , Histones/metabolism , Lysine/metabolism , Methyltransferases/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL