ABSTRACT
Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments, possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding light on device parameters for future applications.
ABSTRACT
Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3ß signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.
Subject(s)
Cardiomyopathy, Dilated , Heart Failure , Myocardial Ischemia , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Proteomics , Mitophagy , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Heart Failure/metabolism , Heart Failure/pathology , Cytoskeleton/metabolism , Microtubules/metabolism , rho-Associated KinasesABSTRACT
Planar Josephson junctions are predicted to host Majorana zero modes. The material platforms in previous studies are two-dimensional electron gases (InAs, InSb, InAsSb, and HgTe) coupled to a superconductor such as Al or Nb. Here, we introduce a new material platform for planar JJs, the PbTe-Pb hybrid. The semiconductor, PbTe, was grown as a thin film via selective area epitaxy. The Josephson junction was defined by a shadow wall during the deposition of superconductor Pb. Scanning transmission electron microscopy reveals a sharp semiconductor-superconductor interface. Gate-tunable supercurrents and multiple Andreev reflections are observed. A perpendicular magnetic field causes interference patterns of the switching current, exhibiting Fraunhofer-like and SQUID-like behaviors. We further demonstrate a prototype device for Majorana detection wherein phase bias and tunneling spectroscopy are applicable.
ABSTRACT
Graphitic carbon nitride (gC3N4) is an attractive photocatalyst for solar energy conversion due to its unique electronic structure and chemical stability. However, gC3N4 generally suffers from insufficient light absorption and rapid compounding of photogenerated charges. The introduction of defects and atomic doping can optimize the electronic structure of gC3N4 and improve the light absorption and carrier separation efficiency. Herein, the high efficiency of carbon nitride photocatalysis for hydrogen evolution in visible light is achieved by an S-modified double-deficient site strategy. Defect engineering forms abundant unsaturated sites and cyano (âC≡N), which promotes strong interlayer CâN bonding interactions and accelerates charge transport in gC3N4. S doping tunes the electronic structure of the semiconductors, and the formation of CâSâC bonds optimizes the electron-transfer paths of the CâN bonding, which enhances the absorption of visible light. Meanwhile,C≡N acts as an electron trap to capture photoexcited electrons, providing the active site for the reduction of H+ to hydrogen. The photocatalytic hydrogen evolution efficiency of SDCN (1613.5 µmol g-1 h-1) is 31.5 times higher than that of pristine MCN (51.2 µmol g-1 h-1). The charge separation situation and charge transfer mechanism of the photocatalysts are investigated in detail by a combination of experimental and theoretical calculations.
ABSTRACT
Influenza virus-induced viral pneumonia is a major threat to human health, and specific therapeutic agents for viral pneumonia are still lacking. MoringaA (MA) is an anti-influenza virus active compound isolated from Moringa seeds, which can inhibit influenza virus by activating the TFEB-autophagic lysosomal pathway in host cells. In this study, we obtained exosomes from M2-type macrophages and encapsulated and delivered MA (MA-Exos), and we investigated the efficacy of MA-Exos in antiviral and viral pneumonia in vivo and in vitro, respectively. In addition, we provided insights into the mechanism by which MA-Exos regulates TFEB-lysosomal autophagy by RNA sequencing. The MA-Exos showed broad-spectrum inhibition of IAV, and significant promotion of the autophagic lysosomal pathway. Meanwhile, we found that GCN5 gene and protein were significantly down-regulated in IAV-infected cells after MA-Exos intervention, indicating its blocking the acetylation of TFEB by GCN5. In addition, MA-Exos also significantly promoted autophagy in lung tissue cells of mice with viral pneumonia. MA-Exos can inhibit and clear influenza virus by mediating the TFEB-autophagy lysosomal pathway by a mechanism related to the down-regulation of histone acetyltransferase GCN5. Our study provides a strategy for targeting MA-Exos for the treatment of viral pneumonia from both antiviral and virus-induced inflammation inhibition pathways.
Subject(s)
Antiviral Agents , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Exosomes , Influenza A virus , Lysosomes , Animals , Mice , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Lysosomes/metabolism , Lysosomes/drug effects , Lysosomes/virology , Exosomes/metabolism , Antiviral Agents/pharmacology , Autophagy/drug effects , Humans , Influenza A virus/drug effects , Influenza A virus/physiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/drug therapy , Macrophages/virology , Macrophages/drug effects , Lung/virologyABSTRACT
Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.
ABSTRACT
BACKGROUND: Sepsis may be linked to oxidative stress and can be controlled by itaconate, an activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Nevertheless, the itaconate impact on sepsis-associated acute kidney injury (SA-AKI) has yet to be definitively established. METHODS: We employed SA-AKI mouse model through a cecal ligation and puncture (CLP) procedure for the in vivo investigation of the potential nephroprotective effect of itaconate in this study. A plasmid was transfected into RAW264.7 cells to examine the Nrf2 pathway function after itaconate administration. Finally, the immune-responsive gene 1-knockout (IRG1-/-) mice were used to study the itaconate impacts on oxidative stress-induced SA-AKI. RESULTS: We have shown that 4-octyl itaconate (OI) significantly reduced CD11b-positive macrophage aggregation and activated the Nrf2 pathway in the bone marrow-derived macrophages (BMDM). The impacts of Nrf2 inhibitor ML385 on the anti-inflammatory and antioxidant properties of itaconate were found to be partial. OI inhibited lipopolysaccharide-induced oxidative stress injury in RAW264.7 macrophages and activated Nrf2 in the nucleus to hinder the expression of nuclear factor kappa B p65, thereby suppressing oxidative stress injury in the macrophages. Additionally, the introduction of the transfected plasmid resulted in a partial inhibition of the anti-inflammatory impact of itaconate. The kidney injury caused by sepsis exhibited greater severity in the IRG1-/- mice than in the wild type mice. Exogenous OI partially attenuated the kidney injury induced by sepsis in the IRG1-/- mice and suppressed the oxidative stress injury in macrophages. CONCLUSIONS: This investigation offers new proof to support the itaconate function in the development and progression of SA-AKI and shows a new possible therapeutic agent for the SA-AKI treatment.
Subject(s)
Acute Kidney Injury , Sepsis , Succinates , Mice , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Macrophage Activation , Oxidative Stress , Acute Kidney Injury/etiology , Anti-Inflammatory Agents/pharmacology , Sepsis/complicationsABSTRACT
MicroRNAs (miRNAs), which play critical roles in gene regulatory networks, have emerged as promising diagnostic and prognostic biomarkers for human cancer. In particular, circulating miRNAs that are secreted into circulation exist in remarkably stable forms, and have enormous potential to be leveraged as non-invasive biomarkers for early cancer detection. Novel and user-friendly tools are desperately needed to facilitate data mining of the vast amount of miRNA expression data from The Cancer Genome Atlas (TCGA) and large-scale circulating miRNA profiling studies. To fill this void, we developed CancerMIRNome, a comprehensive database for the interactive analysis and visualization of miRNA expression profiles based on 10 554 samples from 33 TCGA projects and 28 633 samples from 40 public circulating miRNome datasets. A series of cutting-edge bioinformatics tools and machine learning algorithms have been packaged in CancerMIRNome, allowing for the pan-cancer analysis of a miRNA of interest across multiple cancer types and the comprehensive analysis of miRNome profiles to identify dysregulated miRNAs and develop diagnostic or prognostic signatures. The data analysis and visualization modules will greatly facilitate the exploit of the valuable resources and promote translational application of miRNA biomarkers in cancer. The CancerMIRNome database is publicly available at http://bioinfo.jialab-ucr.org/CancerMIRNome.
Subject(s)
Biomarkers, Tumor/genetics , Databases, Genetic , MicroRNAs/genetics , Neoplasms/genetics , Biomarkers, Tumor/classification , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/classification , Neoplasms/classificationABSTRACT
BACKGROUND: Normal bile is sterile. Studies have shown that cholangitis after liver transplantation (LT) was associated with a relatively poor prognosis. It remains unclear whether the bacteriobilia or fungibilia impact the patient outcomes in LT recipients, especially with donation after circulatory death (DCD) allografts, which was correlated with a higher risk of allograft failure. METHODS: This retrospective study included 139 LT recipients of DCD grafts from 2019 to 2021. All patients were divided into two groups according to the presence or absence of bacteriobilia or fungibilia. The prevalence and microbial spectrum of postoperative bacteriobilia or fungibilia and its possible association with outcomes, especially hospital stay were analyzed. RESULTS: Totally 135 and 171 organisms were isolated at weeks 1 and 2, respectively. Among all patients included in this analysis, 83 (59.7%) developed bacteriobilia or fungibilia within 2 weeks post-transplantation. The occurrence of bacteriobilia or fungibilia (ß = 7.43, 95% CI: 0.02 to 14.82, P = 0.049), particularly the detection of Pseudomonas (ß = 18.84, 95% CI: 6.51 to 31.07, P = 0.003) within 2 weeks post-transplantation was associated with a longer hospital stay. However, it did not affect the graft and patient survival. CONCLUSIONS: The occurrence of bacteriobilia or fungibilia, particularly Pseudomonas within 2 weeks post-transplantation, could influence the recovery of liver function and was associated with prolonged hospital stay but not the graft and patient survival.
ABSTRACT
Disorder is the primary obstacle in the current Majorana nanowire experiments. Reducing disorder or achieving ballistic transport is thus of paramount importance. In clean and ballistic nanowire devices, quantized conductance is expected, with plateau quality serving as a benchmark for disorder assessment. Here, we introduce ballistic PbTe nanowire devices grown by using the selective-area-growth (SAG) technique. Quantized conductance plateaus in units of 2e2/h are observed at zero magnetic field. This observation represents an advancement in diminishing disorder within SAG nanowires as most of the previously studied SAG nanowires (InSb or InAs) have not exhibited zero-field ballistic transport. Notably, the plateau values indicate that the ubiquitous valley degeneracy in PbTe is lifted in nanowire devices. This degeneracy lifting addresses an additional concern in the pursuit of Majorana realization. Moreover, these ballistic PbTe nanowires may enable the search for clean signatures of the spin-orbit helical gap in future devices.
ABSTRACT
Sepsis is a multiple organ dysfunction syndrome due to a dysregulated response to infection with unacceptably high mortality. Currently, no effective treatment exists for sepsis. IRG1/itaconate has been considered to play a protective role for various inflammatory diseases. In the present study, we explored the protective role and mechanisms of IRG1/itaconate on lipopolysaccharide (LPS)-induced multi-organ injury. The LPS-induced sepsis model was used. IRG1-/- and wild type mice were used to explore the protective role of IRG1/itaconate on multi-organ injury. GSDMD-/- mice were used to explore the effect of GSDMD-mediated pyroptosis on LPS-induced model. RAW264.7 cells and bone-marrow-derived macrophages (BMDMs) were used for in vitro studies. In vivo experiments, we found IRG1 deficiency aggravated LPS-induced multi-organ injury especially lung injury. 4-Octyl itaconate (4-OI), a derivative of itaconate, significantly ameliorated LPS-induced acute lung, liver, and kidney injury. Furthermore, IRG1/4-OI decreased serum interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α) level, macrophage infiltration, and TUNEL-positive cells in lung and liver tissue. Western blot showed IRG1/itaconate decreased the expressions of p-ERK, p-P38, p-JNK, and p-P65 and increased the expression of Nrf2/HO-1 in lung tissue. Meanwhile, 4-OI inhibited the expression of GSDMD-N. In vitro experiments, 4-OI inhibited ROS production and promoted apoptosis under LPS stimulation in RAW264.7 cells. Furthermore, 4-OI inhibited nuclear factor-kappaB/mitogen-activated protein kinase pathways and GSDMD-medicated pyroptosis in BMDMs. Finally, we used GSDMD-/- mice to explore the effect of pyroptosis on LPS-induced multi-organ injury. The results showed that GSDMD deficiency significantly ameliorated lung injury. In conclusion, our data demonstrated that IRG1/itaconate protect against multi-organ injury via inhibiting inflammation response and GSDMD-indicated pyroptosis, which may be a promising agent for protecting against sepsis.
Subject(s)
Lung Injury , Sepsis , Succinates , Animals , Mice , Pyroptosis , Gasdermins , Lipopolysaccharides/pharmacology , Sepsis/drug therapy , ImmunityABSTRACT
Although PARP inhibitor (PARPi) has been proven to be a promising anticancer drug in cancer patients harboring BRCA1/2 mutation, it provides limited clinical benefit in colorectal cancer patients with a low prevalence of BRCA1/2 mutations. In our study, we found PARPi talazoparib significantly induced cellular senescence via inhibiting p53 ubiquitination and activating p21. Furthermore, CDK4/6i palbociclib amplified this therapy-induced senescence (TIS) in vitro and in vivo. Mechanistically, talazoparib and palbociclib combination induced senescence-associated secretory phenotype (SASP), and characterization of SASP components revealed type I interferon (IFN)-related mediators, which were amplified by cGAS/STING signaling. More importantly, RNA sequencing data indicated that combination therapy activated T cell signatures and combination treatment transformed the tumor microenvironment (TME) into a more antitumor state with increased CD8 T cells and natural killer (NK) cells and decreased macrophages and granulocytic myeloid-derived suppressor cells (G-MDSCs). Moreover, clearance of the TIS cells by αPD-L1 promoted survival in immunocompetent mouse colorectal cancer models. Collectively, we elucidated the synergistic antitumor and immunomodulatory mechanisms of the talazoparib-palbociclib combination. Further combination with PD-L1 antibody might be a promising "one-two punch" therapeutic strategy for colorectal cancer patients.
Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Animals , Mice , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA1 Protein , B7-H1 Antigen , BRCA2 Protein , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Nucleotidyltransferases , Tumor Microenvironment , Cyclin-Dependent Kinase 4ABSTRACT
Water electrolysis is an ideal method for industrial green hydrogen production. However, due to increasing scarcity of freshwater, it is inevitable to develop advanced catalysts for electrolyzing seawater especially at large current density. This work reports a unique Ru nanocrystal coupled amorphous-crystal Ni(Fe)P2 nanosheet bifunctional catalyst (Ru-Ni(Fe)P2 /NF), caused by partial substitution of Fe to Ni atoms in Ni(Fe)P2 , and explores its electrocatalytic mechanism by density functional theory (DFT) calculations. Owing to high electrical conductivity of crystalline phases, unsaturated coordination of amorphous phases, and couple of Ru species, Ru-Ni(Fe)P2 /NF only requires overpotentials of 375/295 and 520/361 mV to drive a large current density of 1 A cm-2 for oxygen/hydrogen evolution reaction (OER/HER) in alkaline water/seawater, respectively, significantly outperforming commercial Pt/C/NF and RuO2 /NF catalysts. In addition, it maintains stable performance at large current density of 1 A cm-2 and 600 mA cm-2 for 50 h in alkaline water and seawater, respectively. This work provides a new way for design of catalysts toward industrial-level seawater splitting.
ABSTRACT
The multivariate genomic selection (GS) models have not been adequately studied and their potential remains unclear. In this study, we developed a highly efficient bivariate (2D) GS method and demonstrated its significant advantages over the univariate (1D) rival methods using a rice dataset, where four traditional traits (i.e. yield, 1000-grain weight, grain number and tiller number) as well as 1000 metabolomic traits were analyzed. The novelty of the method is the incorporation of the HAT methodology in the 2D BLUP GS model such that the computational efficiency has been dramatically increased by avoiding the conventional cross-validation. The results indicated that (1) the 2D BLUP-HAT GS analysis generally produces higher predictabilities for two traits than those achieved by the analysis of individual traits using 1D GS model, and (2) selected metabolites may be utilized as ancillary traits in the new 2D BLUP-HAT GS method to further boost the predictability of traditional traits, especially for agronomically important traits with low 1D predictabilities.
Subject(s)
Models, Genetic , Oryza/genetics , Quantitative Trait Loci , Selection, GeneticABSTRACT
Prognostic tests using expression profiles of several dozen genes help provide treatment choices for prostate cancer (PCa). However, these tests require improvement to meet the clinical need for resolving overtreatment, which continues to be a pervasive problem in PCa management. Genomic selection (GS) methodology, which utilizes whole-genome markers to predict agronomic traits, was adopted in this study for PCa prognosis. We leveraged The Cancer Genome Atlas (TCGA) database to evaluate the prediction performance of six GS methods and seven omics data combinations, which showed that the Best Linear Unbiased Prediction (BLUP) model outperformed the other methods regarding predictability and computational efficiency. Leveraging the BLUP-HAT method, an accelerated version of BLUP, we demonstrated that using expression data of a large number of disease-relevant genes and with an integration of other omics data (i.e. miRNAs) significantly increased outcome predictability when compared with panels consisting of a small number of genes. Finally, we developed a novel stepwise forward selection BLUP-HAT method to facilitate searching multiomics data for predictor variables with prognostic potential. The new method was applied to the TCGA data to derive mRNA and miRNA expression signatures for predicting relapse-free survival of PCa, which were validated in six independent cohorts. This is a transdisciplinary adoption of the highly efficient BLUP-HAT method and its derived algorithms to analyze multiomics data for PCa prognosis. The results demonstrated the efficacy and robustness of the new methodology in developing prognostic models in PCa, suggesting a potential utility in managing other types of cancer.
Subject(s)
Algorithms , Biomarkers, Tumor/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genomics/methods , Prostatic Neoplasms/genetics , Aged , Humans , Kaplan-Meier Estimate , Male , MicroRNAs/genetics , Middle Aged , Models, Genetic , Neoplasm Staging , Phenotype , Prognosis , Prostatectomy/methods , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgeryABSTRACT
OBJECTIVE: We aimed to identify key susceptibility gene targets in multiple datasets generated from postmortem brains and blood of Parkinson's disease (PD) patients and healthy controls (HC). METHODS: We performed a multitiered analysis to integrate the gene expression data using multiple-gene chips from 244 human postmortem tissues. We identified hub node genes in the highly PD-related consensus module by constructing protein-protein interaction (PPI) networks. Next, we validated the top four interacting genes in 238 subjects (90 sporadic PD, 125 HC and 23 Parkinson's Plus Syndrome (PPS)). Utilizing multinomial logistic regression analysis (MLRA) and receiver operating characteristic (ROC), we analyzed the risk factors and diagnostic power for discriminating PD from HC and PPS. RESULTS: We identified 1333 genes that were significantly different between PD and HCs based on seven microarray datasets. The identified MEturquoise module is related to synaptic vesicle trafficking (SVT) dysfunction in PD (P < 0.05), and PPI analysis revealed that SVT genes PPP2CA, SYNJ1, NSF and PPP3CB were the top four hub node genes in MEturquoise (P < 0.001). The levels of these four genes in PD postmortem brains were lower than those in HC brains. We found lower blood levels of PPP2CA, SYNJ1 and NSF in PD compared with HC, and lower SYNJ1 in PD compared with PPS (P < 0.05). SYNJ1, negatively correlated to PD severity, displayed an excellent power to discriminating PD from HC and PPS. CONCLUSIONS: This study highlights that SVT genes, especially SYNJ1, may be promising markers in discriminating PD from HCs and PPS.
Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Nerve Tissue Proteins , Parkinson Disease , Protein Interaction Maps , Synaptic Vesicles , Autopsy , Biomarkers/metabolism , Female , Humans , Male , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synaptic Vesicles/genetics , Synaptic Vesicles/metabolismABSTRACT
Hepatocellular carcinoma (HCC) is a fatal malignancy which has insufficient treatment options. Long non-coding RNA (lncRNA) GASAL1 was discovered to be conspicuously up-regulated in HCC. However, the study on the role of GASAL1 in HCC reamins limited. Our study aimed at exploring the role and mechanism of GASAL1 in HCC. RT-qPCR or Western blot was conducted to examine the expression of RNAs or proteins. Functional assays were carried out to investigate the impact of GASAL1, USP10, and PCNA on HCC cells. Mechanism assays were performed to fathom out the relationship among GASAL1, miR-193b-5p, USP10, and PCNA. In vivo assays were also employed to determine the role of GASAL1 in HCC tumor growth and metastases. According to the data collected, GASAL1 displayed a high expression in HCC cells and GASAL1 knockdown led to impeded cell proliferation and migration, as well as tumor progression. A series of mechanism analysis demonstrated GASAL1 could sponge miR-193b-5p to raise the expression of USP10. Moreover, USP10 could induce PCNA deubiquitination to promote HCC cell growth. To conclude, GASAL1 plays an oncogenic role in HCC. GASAL1 could up-regulate USP10 via competitively binding to miR-193b-5p. And USP10 could strengthen cell proliferative and migratory abilities through deubiquitinating PCNA.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver Neoplasms/pathology , MicroRNAs/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolismABSTRACT
Metabolic states greatly influence functioning and differentiation of immune cells. Regulating the metabolism of immune cells can effectively modulate the host immune response. Itaconate, an intermediate metabolite derived from the tricarboxylic acid (TCA) cycle of immune cells, is produced through the decarboxylation of cis-aconitate by cis-aconitate decarboxylase in the mitochondria. The gene encoding cis-aconitate decarboxylase is known as immune response gene 1 (IRG1). In response to external proinflammatory stimulation, macrophages exhibit high IRG1 expression. IRG1/itaconate inhibits succinate dehydrogenase activity, thus influencing the metabolic status of macrophages. Therefore, itaconate serves as a link between macrophage metabolism, oxidative stress, and immune response, ultimately regulating macrophage function. Studies have demonstrated that itaconate acts on various signaling pathways, including Keap1-nuclear factor E2-related factor 2-ARE pathways, ATF3-IκBζ axis, and the stimulator of interferon genes (STING) pathway to exert antiinflammatory and antioxidant effects. Furthermore, several studies have reported that itaconate affects cancer occurrence and development through diverse signaling pathways. In this paper, we provide a comprehensive review of the role IRG1/itaconate and its derivatives in the regulation of macrophage metabolism and functions. By furthering our understanding of itaconate, we intend to shed light on its potential for treating inflammatory diseases and offer new insights in this field.
Subject(s)
NF-E2-Related Factor 2 , Succinates , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Succinates/pharmacology , Succinates/metabolism , ImmunityABSTRACT
BACKGROUND: Liver transplantation (LT) is the "cure" therapy for patients with hepatocellular carcinoma (HCC). However, some patients encounter HCC recurrence after LT. Unfortunately, there is no effective methods to identify the LT patients who have high risk of HCC recurrence and would benefit from adjuvant targeted therapy. The present study aimed to establish a scoring system to predict HCC recurrence of HCC patients after LT among the Chinese population, and to evaluate whether these patients are suitable for adjuvant targeted therapy. METHODS: Clinical data of HCC patients who underwent LT from March 2015 to June 2019 were retrospectively collected and analyzed. RESULTS: A total of 201 patients were included in the study. The multivariate Cox analysis suggested that preoperative alpha-fetoprotein (AFP) > 200 µg/L (HR = 2.666, 95% CI: 1.515-4.690; P = 0.001), glutamyl transferase (GGT) > 96 U/L (HR = 1.807, 95% CI: 1.012-3.224; P = 0.045), and exceeding the Hangzhou criteria (HR = 2.129, 95% CI: 1.158-3.914; P = 0.015) were independent risk factors for poor disease-free survival (DFS) in patients with HCC who underwent LT. We established an AFP-GGT-Hangzhou (AGH) scoring system based on these factors, and divided cases into high-, moderate-, and low-risk groups. The differences in overall survival (OS) and disease-free survival (DFS) rates among the three groups were significant (P < 0.05). The efficacy of the AGH scoring system to predict DFS was better than that of the Hangzhou criteria, UCSF criteria, Milan criteria, and TNM stage. Only in the high-risk group, we found that lenvatinib significantly improved prognosis compared with that of the control group (P < 0.05). CONCLUSIONS: The AGH scoring system provides a convenient and effective way to predict HCC recurrence after LT in HCC patients in China. Patients with a high-risk AGH score may benefit from lenvatinib adjuvant therapy after LT.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Humans , Carcinoma, Hepatocellular/surgery , Liver Transplantation/adverse effects , Liver Neoplasms/surgery , alpha-Fetoproteins , Disease-Free Survival , Retrospective Studies , Neoplasm Recurrence, Local/epidemiology , Risk FactorsABSTRACT
Only a few transcriptional regulators of seed storage protein (SSP) genes have been identified in common wheat (Triticum aestivum L.). Coexpression analysis could be an efficient approach to characterize novel transcriptional regulators at the genome-scale considering the correlated expression between transcriptional regulators and target genes. As the A genome donor of common wheat, Triticum urartu is more suitable for coexpression analysis than common wheat considering the diploid genome and single gene copy. In this work, the transcriptome dynamics in endosperm of T. urartu throughout grain filling were revealed by RNA-Seq analysis. In the coexpression analysis, a total of 71 transcription factors (TFs) from 23 families were found to be coexpressed with SSP genes. Among these TFs, TuNAC77 enhanced the transcription of SSP genes by binding to cis-elements distributed in promoters. The homolog of TuNAC77 in common wheat, TaNAC77, shared an identical function, and the total SSPs were reduced by about 24% in common wheat when TaNAC77 was knocked down. This is the first genome-wide identification of transcriptional regulators of SSP genes in wheat, and the newly characterized transcriptional regulators will undoubtedly expand our knowledge of the transcriptional regulation of SSP synthesis.