Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 390
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 619(7971): 738-742, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438533

ABSTRACT

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

2.
Nature ; 597(7878): 650-654, 2021 09.
Article in English | MEDLINE | ID: mdl-34588665

ABSTRACT

The Wigner crystal1 has fascinated condensed matter physicists for nearly 90 years2-14. Signatures of two-dimensional (2D) Wigner crystals were first observed in 2D electron gases under high magnetic field2-4, and recently reported in transition metal dichalcogenide moiré superlattices6-9. Direct observation of the 2D Wigner crystal lattice in real space, however, has remained an outstanding challenge. Conventional scanning tunnelling microscopy (STM) has sufficient spatial resolution but induces perturbations that can potentially alter this fragile state. Here we demonstrate real-space imaging of 2D Wigner crystals in WSe2/WS2 moiré heterostructures using a specially designed non-invasive STM spectroscopy technique. This employs a graphene sensing layer held close to the WSe2/WS2 moiré superlattice. Local STM tunnel current into the graphene layer is modulated by the underlying Wigner crystal electron lattice in the WSe2/WS2 heterostructure. Different Wigner crystal lattice configurations at fractional electron fillings of n = 1/3, 1/2 and 2/3, where n is the electron number per site, are directly visualized. The n = 1/3 and n = 2/3 Wigner crystals exhibit triangular and honeycomb lattices, respectively, to minimize nearest-neighbour occupations. The n = 1/2 state spontaneously breaks the original C3 symmetry and forms a stripe phase. Our study lays a solid foundation for understanding Wigner crystal states in WSe2/WS2 moiré heterostructures and provides an approach that is generally applicable for imaging novel correlated electron lattices in other systems.

3.
Nat Chem Biol ; 19(1): 72-80, 2023 01.
Article in English | MEDLINE | ID: mdl-36163384

ABSTRACT

The transient receptor potential vanilloid 2 (TRPV2) ion channel is a polymodal receptor widely involved in many physiological and pathological processes. Despite many TRPV2 modulators being identified, whether and how TRPV2 is regulated by endogenous lipids remains elusive. Here, we report an endogenous cholesterol molecule inside the vanilloid binding pocket (VBP) of TRPV2, with a 'head down, tail up' configuration, resolved at 3.2 Å using cryo-EM. Cholesterol binding antagonizes ligand activation of TRPV2, which is removed from VBP by methyl-ß-cyclodextrin (MßCD) as resolved at 2.9 Å. We also observed that estradiol (E2) potentiated TRPV2 activation by 2-aminoethoxydiphenyl borate (2-APB), a classic tool compound for TRP channels. Our cryo-EM structures (resolved at 2.8-3.3 Å) further suggest how E2 disturbed cholesterol binding and how 2-APB bound within the VBP with E2 or without both E2 and endogenous cholesterol, respectively. Therefore, our study has established the structural basis for ligand recognition of the inhibitory endogenous cholesterol and excitatory exogenous 2-APB in TRPV2.


Subject(s)
TRPV Cation Channels , TRPV Cation Channels/chemistry , Ligands
4.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35917353

ABSTRACT

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Proteins , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , Cryoelectron Microscopy , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/therapy , Herpesvirus 4, Human/immunology , Humans , Membrane Fusion , Mice , Viral Proteins/immunology
5.
Proc Natl Acad Sci U S A ; 119(34): e2204256119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35972965

ABSTRACT

Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Conserved Sequence , Cricetinae , Cryoelectron Microscopy , Epitopes/immunology , Humans , Mice , Neutralization Tests , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
6.
J Am Chem Soc ; 146(17): 11764-11772, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38625675

ABSTRACT

Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.

7.
BMC Plant Biol ; 24(1): 244, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575936

ABSTRACT

BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.


Subject(s)
Arachis , Genome-Wide Association Study , Arachis/genetics , Quantitative Trait Loci/genetics , Plant Breeding , Chromosome Mapping/methods , Phenotype , Polymorphism, Single Nucleotide/genetics
8.
J Virol ; 97(3): e0181922, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36815785

ABSTRACT

Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.


Subject(s)
Capsid Proteins , Human papillomavirus 16 , Female , Humans , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/pathogenicity , Papillomavirus Infections/virology , Amino Acid Sequence/genetics , Mutation , Cell Line , Protein Structure, Tertiary/genetics , Models, Molecular
9.
J Virol ; 97(11): e0113723, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37855619

ABSTRACT

IMPORTANCE: The ongoing COVID-19 pandemic has been characterized by the emergence of new SARS-CoV-2 variants including the highly transmissible Omicron XBB sublineages, which have shown significant resistance to neutralizing antibodies (nAbs). This resistance has led to decreased vaccine effectiveness and therefore result in breakthrough infections and reinfections, which continuously threaten public health. To date, almost all available therapeutic nAbs, including those authorized under Emergency Use Authorization nAbs that were previously clinically useful against early strains, have recently been found to be ineffective against newly emerging variants. In this study, we provide a comprehensive structural basis about how the Class 3 nAbs, including 1G11 in this study and noted LY-CoV1404, are evaded by the newly emerged SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Pandemics , Humans , Antibodies, Neutralizing/immunology , Antibodies, Viral , Breakthrough Infections , COVID-19/immunology , COVID-19/virology
10.
Metab Eng ; 84: 95-108, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901556

ABSTRACT

Microbial instability is a common problem during bio-production based on microbial hosts. Halomonas bluephagenesis has been developed as a chassis for next generation industrial biotechnology (NGIB) under open and unsterile conditions. However, the hidden genomic information and peculiar metabolism have significantly hampered its deep exploitation for cell-factory engineering. Based on the freshly completed genome sequence of H. bluephagenesis TD01, which reveals 1889 biological process-associated genes grouped into 84 GO-slim terms. An enzyme constrained genome-scale metabolic model Halo-ecGEM was constructed, which showed strong ability to simulate fed-batch fermentations. A visible salt-stress responsive landscape was achieved by combining GO-slim term enrichment and CVT-based omics profiling, demonstrating that cells deploy most of the protein resources by force to support the essential activity of translation and protein metabolism when exposed to salt stress. Under the guidance of Halo-ecGEM, eight transposases were deleted, leading to a significantly enhanced stability for its growth and bioproduction of various polyhydroxyalkanoates (PHA) including 3-hydroxybutyrate (3HB) homopolymer PHB, 3HB and 3-hydroxyvalerate (3HV) copolymer PHBV, as well as 3HB and 4-hydroxyvalerate (4HB) copolymer P34HB. This study sheds new light on the metabolic characteristics and stress-response landscape of H. bluephagenesis, achieving for the first time to construct a long-term growth stable chassis for industrial applications. For the first time, it was demonstrated that genome encoded transposons are the reason for microbial instability during growth in flasks and fermentors.

11.
Exp Eye Res ; 245: 109978, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908538

ABSTRACT

The pathogenesis of keratoconus (KC) is complex, and genetic factors play an important role. The purpose of this study was to screen and analyse candidate genes and variants in Chinese patients with primary sporadic KC. Whole-exome sequencing (WES) was performed to identify candidate genes and variants in 105 unrelated Chinese patients with primary sporadic KC. Through a series of screening processes, 54 candidate variants in 26 KC candidate genes were identified in 53 KC patients (53/105, 50.5%). These 54 candidate variants included 10 previously identified variants in 9 KC candidate genes and 44 novel variants in 20 KC candidate genes. The previously identified variants occurred in 25.7% (27/105) of patients. Of these, 4 variants (COL6A5, c.5014T > G; CAST, c.1814G > A; ZNF469, c.946G > A; and MPDZ, c.3836A > G) were identified for the first time in Chinese KC patients. The novel variants occurred in 33.3% (35/105) of patients. Of the 26 screened KC candidate genes, 11 KC candidate genes (CAT, COL12A1, FLG, HKDC1, HSPG2, PLOD1, ITGA2, TFAP2B, USH2A, WNT10A, and COL6A5) were found to be potentially pathogenic in Chinese KC patients for the first time. Gene Ontology (GO) biological process (BP) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the 26 KC candidate genes using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The results showed that the KC candidate genes were significantly enriched in biological processes such as collagen fibril organization and extracellular matrix (ECM) organization and in ECM-receptor interaction and protein digestion and absorption pathways. The results further expand the spectrum of KC candidate variants and provide a basis for further KC gene studies.

12.
Int J Med Sci ; 21(1): 61-69, 2024.
Article in English | MEDLINE | ID: mdl-38164345

ABSTRACT

Background: Primary biliary cholangitis (PBC) is a rare autoimmune liver disease with few effective treatments and a poor prognosis, and its incidence is on the rise. There is an urgent need for more targeted treatment strategies to accurately identify high-risk patients. The use of stochastic survival forest models in machine learning is an innovative approach to constructing a prognostic model for PBC that can improve the prognosis by identifying high-risk patients for targeted treatment. Method: Based on the inclusion and exclusion criteria, the clinical data and follow-up data of patients diagnosed with PBC-associated cirrhosis between January 2011 and December 2021 at Taizhou Hospital of Zhejiang Province were retrospectively collected and analyzed. Data analyses and random survival forest model construction were based on the R language. Result: Through a Cox univariate regression analysis of 90 included samples and 46 variables, 17 variables with p-values <0.1 were selected for initial model construction. The out-of-bag (OOB) performance error was 0.2094, and K-fold cross-validation yielded an internal validation C-index of 0.8182. Through model selection, cholinesterase, bile acid, the white blood cell count, total bilirubin, and albumin were chosen for the final predictive model, with a final OOB performance error of 0.2002 and C-index of 0.7805. Using the final model, patients were stratified into high- and low-risk groups, which showed significant differences with a P value <0.0001. The area under the curve was used to evaluate the predictive ability for patients in the first, third, and fifth years, with respective results of 0.9595, 0.8898, and 0.9088. Conclusion: The present study constructed a prognostic model for PBC-associated cirrhosis patients using a random survival forest model, which accurately stratified patients into low- and high-risk groups. Treatment strategies can thus be more targeted, leading to improved outcomes for high-risk patients.


Subject(s)
Liver Cirrhosis, Biliary , Humans , Prognosis , Liver Cirrhosis, Biliary/diagnosis , Liver Cirrhosis, Biliary/drug therapy , Ursodeoxycholic Acid/therapeutic use , Retrospective Studies , Liver Cirrhosis/drug therapy
13.
Article in English | MEDLINE | ID: mdl-38896281

ABSTRACT

PURPOSE: To investigate the factors associated with and impact on the femtosecond-assisted (FS-assisted) limbal relaxing incision (LRI) combined with the steep-meridian tri-planar clear corneal incision (TCCI) to reduce astigmatism in patients undergoing Implantable Collamer Lens (ICL) surgery. METHODS: Retrospective case series. The study reviewed patients with ICL surgery combined with FS-assisted LRIs paired with steep-meridian TCCIs. Correlation analysis examined the relationship between independent variables, including preoperative characteristics (intraocular pressure, corneal thickness, axial length, et al.), TCCI, and LRI surgical parameters. The predictors of surgically induced astigmatism (SIA) were determined using individual-level analysis and accounting for inter-eye correlation with the generalized estimating equation (GEE). RESULTS: The study enrolled 69 patients, with 114 eyes (55 right and 59 left). The mean spherical equivalent (SEQ) was - 10.29 ± 2.99D and - 9.99 ± 2.72D for the right and left eye, respectively, while the mean preoperative corneal astigmatism was - 1.54 ± 0.47D and - 1.54 ± 0.46D for the right and left eyes, respectively. After 12 months of follow-up, univariate analysis revealed significant correlations between SIA and intraocular pressure (IOP), astigmatism type, TCCI position (degree), peripheral corneal thickness (PCT), LRI arc incision diameter, post depth (%), and angle, respectively (P = 0.046, 0.016, 0.039, 0.040, 0.009, 0.000, 0.000). Multivariate analysis using GEE demonstrated that axial length (AL), astigmatism type, LRI arc diameter, and angle were independent predictors of SIA (P = 0.000, 0.005, 0.029, 0.000). CONCLUSIONS: The type of astigmatism and axial length were independent factors that affected SIA when modifying the LRI arc diameter and angle through FS-assisted steep-meridian TCCI paired with LRI in ICL surgery.

14.
Article in English | MEDLINE | ID: mdl-38758376

ABSTRACT

PURPOSE: To compare the accuracy of 14 formulas in calculating intraocular lens (IOL) power in extremely long eyes with axial length (AL) over 30.0 mm. METHODS: In this retrospective study, 211 eyes (211 patients) with ALs > 30.0 mm were successfully treated with cataract surgery without complications. Ocular biometric parameters were obtained from IOLMaster 700. Fourteen formulas were evaluated using the optimized A constants: Barrett Universal II (BUII), Kane, Emmetropia Verifying Optical (EVO) 2.0, PEARL-DGS, T2, SRK/T, Holladay 1, Holladay 2, Haigis and Wang-Koch AL adjusted formulas (SRK/Tmodified-W/K, Holladay 1modified-W/K, Holladay 1NP-modified-W/K, Holladay 2modified-W/K, Holladay 2NP-modified-W/K). The mean prediction error (PE) and standard deviation (SD), mean absolute errors (MAE), median absolute errors (MedAE), and the percentage of prediction errors (PEs) within ± 0.25 D, ± 0.50 D, ± 1.00 D were analyzed. RESULTS: The Kane formula had the smallest MAE (0.43 D) and MedAE (0.34 D). The highest percentage of PE within ± 0.25 D was for EVO 2.0 (37.91%) and the Holladay 1NP-modified-W/K formulas (37.91%). The Kane formula had the highest percentage of PEs in the range of ± 0.50, ± 0.75, ± 1.00, and ± 2.00 D. There was no significant difference in PEs within ± 0.25, ± 0.50 ± 0.75 and ± 1.00 D between BUII, Kane, EVO 2.0 and Wang-Koch AL adjusted formulas (P > .05) by using Cochran's Q test. The Holladay 2modified-W/K formula has the lowest percentage of hyperopic outcomes (29.38%). CONCLUSIONS: The BUII, Kane, EVO 2.0 and Wang-Koch AL adjusted formulas have comparable accuracy for IOL power calculation in eyes with ALs > 30.0 mm.

15.
BMC Nurs ; 23(1): 431, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918784

ABSTRACT

OBJECTIVE: To explore the perception of good death of patients with end-stage cancer by nurses in the oncology department. METHOD: In the study we used a phenomenological approach and semi-structured interviews. A total of 11 nurses from the oncology department of a Grade A hospital in Taizhou were interviewed on the cognition of good death from July 1 to September 30, 2022. Colaizzi's analysis method was used to analyse the interview data. This study followed the consolidated criteria for reporting qualitative research (COREQ). RESULT: Four themes were identified: a strong sense of responsibility and mission; To sustain hope and faith; The important role of family members; Improve patients' quality of life. CONCLUSION: The nurses in the department of oncology have a low level of knowledge about the "good death", and the correct understanding and view of the "good death" is the premise of the realization of " good death". The ability of nursing staff to improve the "good death", attention, and meet the needs and wishes of individuals and families, is the guarantee of the realization of "good death".

16.
Int Ophthalmol ; 44(1): 32, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329567

ABSTRACT

PURPOSE: To explore the accuracy of the improved SRK/T-Li formula in eyes following implantation of intraocular lens (IOL) of less than 10 D as calculated by using the SRK/T formula in Chinese. METHODS: A total of 489 eyes from 489 patients with cataracts were included in this study. These patients were divided into a training set (271 patients) and a testing set (218 patients). The IOL power calculated by using SRK/T was less than 10 D. We evaluated the accuracy of the modified SRK/T-Li formula (P = PSRK/T × 0.8 + 2 (P = implanted IOL power; PSRK/T = IOL power calculated by SRK/T)). We evaluated the mean absolute error (MAE), percentage of prediction error (PE) within ± 0.25, ± 0.50, and ± 1.00 D, and the percentage of postoperative hyperopia. RESULTS: The MAE values in order of lowest to highest were as follows: 0.412 D (SRK/T-Li), 0.414 D (Barrett Universal II, (BUII)), 0.814 D (SRK/T), and 1.039 D (Holladay 1). The percentage of PE within ± 0.25 D, ± 0.50 D, and ± 1.00 D was 38.99%, 69.27% and 92.66% (BUII), 40.83%, 69.27% and 94.04% (SRK/T-Li), 20.64%, 41.28% and 71.56% (SRK/T), and 7.34%, 16.51% and 53.21% (Holladay 1), respectively. SRK/T-Li had the smallest postoperative hyperopic shift. CONCLUSIONS: For Chinese patients with an IOL power of less than 10 D as calculated by using the SRK/T, the SRK/T-Li has good accuracy and is the best choice to reduce postoperative hyperopic shift.


Subject(s)
Cataract , Hyperopia , Lenses, Intraocular , Humans , China , Eye, Artificial , East Asian People
17.
Angew Chem Int Ed Engl ; : e202405123, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714495

ABSTRACT

In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.

18.
J Virol ; 96(8): e0007522, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35348362

ABSTRACT

Epstein-Barr virus (EBV) is an oncogenic herpesvirus that is associated with 200,000 new cases of cancer and 140,000 deaths annually. To date, there are no available vaccines or therapeutics for clinical usage. Recently, the viral heterodimer glycoprotein gH/gL has become a promising target for the development of prophylactic vaccines against EBV. Here, we developed the anti-gH antibody 6H2 and its chimeric version C6H2, which had full neutralizing activity in epithelial cells and partial neutralizing activity in B cells. C6H2 exhibited potent protection against lethal EBV challenge in a humanized mouse model. The cryo-electron microscopy (cryo-EM) structure further revealed that 6H2 recognized a previously unidentified epitope on gH/gL D-IV that is critical for viral attachment and subsequent membrane fusion with epithelial cells. Our results suggest that C6H2 is a promising candidate in the prevention of EBV-induced lymphoproliferative diseases (LPDs) and may inform the design of an EBV vaccine. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that establishes lifelong persistence and is related to multiple diseases, including cancers. Neutralizing antibodies (NAbs) have proven to be highly effective in preventing EBV infection and subsequent diseases. Here, we developed an anti-EBV-gH NAb, 6H2, which blocked EBV infection in vitro and in vivo. This 6H2 neutralizing epitope should be helpful to understand EBV infection mechanisms and guide the development of vaccines and therapeutics against EBV infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Envelope Proteins , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cryoelectron Microscopy , Epitopes/chemistry , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/metabolism , Mice , Vaccines , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology
19.
BMC Microbiol ; 23(1): 132, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37189022

ABSTRACT

BACKGROUND: Rhizosphere soil physicochemical, endophytic fungi have an important role in plant growth. A large number of endophytic fungi play an indispensable role in promoting plant growth and development, and they can provide protection for host plants by producing a variety of secondary metabolites to resist and inhibit plant pathogens. Due to the terrain of Gansu province is north-south and longitudinal, different climatic conditions, altitude, terrain and growth environment will affect the growth of Codonopsis pilosula, and the changes in these environmental factors directly affect the quality and yield of C. pilosula in different production areas. However, In C. pilosula, the connection between soil nutrients, spatiotemporal variation and the community structure of endophytic fungi isolated from C. pilosula roots has not been well studied. RESULTS: Seven hundred six strains of endophytic fungi were obtained using tissue isolation and the hyphaend-purification method from C. pilosula roots that picked at all seasons and six districts (Huichuan, HC; Longxi, LX; Zhangxian, ZX; Minxian, MX; Weiyuan, WY; and Lintao, LT) in Gansu Province, China. Fusarium sp. (205 strains, 29.04%), Aspergillus sp. (196 strains, 27.76%), Alternaria sp. (73 strains, 10.34%), Penicillium sp. (58 strains, 8.22%) and Plectosphaerella sp. (56 strains, 7.93%) were the dominant genus. The species composition differed from temporal and spatial distribution (Autumn and Winter were higher than Spring and Summer, MX and LT had the highest similarity, HC and LT had the lowest). physical and chemical of soil like Electroconductibility (EC), Total nitrogen (TN), Catalase (CAT), Urease (URE) and Sucrase (SUC) had significant effects on agronomic traits of C. pilosula (P < 0.05). AK (Spring and Summer), TN (Autumn) and altitude (Winter) are the main driving factors for the change of endophytic fungal community. Moreover, geographic location (such as altitude, latitude and longitude) also has effects on the diversity of endophytic fungi. CONCLUSIONS: These results suggested that soil nutrients and enzyme, seasonal variation and geographical locations have an impact on shaping the community structure of culturable endophytic fungi in the roots of C. pilosula and its root traits. This suggests that climatic conditions may play a driving role in the growth and development of C. pilosula.


Subject(s)
Ascomycota , Codonopsis , Mycobiome , Seasons , Codonopsis/chemistry , Fungi , Soil , Plant Roots/microbiology , Endophytes
20.
Microb Pathog ; 181: 106155, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301331

ABSTRACT

Type I interferon has great broad-spectrum antiviral ability and immunomodulatory function, and its receptors are expressed in almost all types of cells. Bovine viral diarrhea virus (BVDV) is an important pathogen causing significant economic losses in cattle. In this study, a recombinant expression plasmid carrying bovine interferon-α(BoIFN-α)gene was constructed and transformed into E. coli BL21 (DE3) competent cells. SDS-PAGE and Westernblotting analysis showed that the recombinant BoIFN-α protein (rBoIFN-α) was successfully expressed. It is about 36KD and exists in the form of inclusion body. When denatured, purified and renatured rBoIFN-α protein stimulated MDBK cells, the expression of interferon stimulating genes (ISGs) such as ISG15, OAS1, IFIT1, Mx1 and IFITM1 were significantly up-regulated, and reached the peak at 12 h (P< 0.001). MDBK cells were infected with BVDV with moi of 0.1 and 1.0, respectively. The virus proliferation was observed after pretreatment with rBoIFN-α protein and post-infection treatment. The results showed that the denatured, purified and renatured BoIFN-α protein had good biological activity and could inhibit the replication of BVDV in MDBK cells in vitro, which provided a basis for BoIFN-α as an antiviral drug, immune enhancer and clinical application of BVDV.


Subject(s)
Diarrhea Viruses, Bovine Viral , Interferon Type I , Animals , Cattle , Escherichia coli , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Interferon-alpha/metabolism , Antiviral Agents/therapeutic use , Interferon Type I/metabolism , Diarrhea Viruses, Bovine Viral/genetics , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL