Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Mod Pathol ; 37(3): 100427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219951

ABSTRACT

The understanding of schwannoma tumorigenesis has been reshaped by the recent identification of SH3PXD2A::HTRA1 fusion in 10% of intracranial/spinal schwannomas. Nonetheless, pathologic features of schwannomas harboring this fusion, as well as its prevalence outside intracranial/spinal locations, have not been characterized. We screened 215 consecutive schwannomas for their clinicopathologic characteristics and fusion status using reverse-transcriptase polymerase chain reaction (RT-PCR). Among 29 (13.5%) fusion-positive schwannomas, the most prevalent location was peripheral somatic tissue (30.7%, 19/62), followed by spinal/paraspinal (18.4%, 7/38), body cavity/deep structures (10%, 2/20), intracranial (1.3%, 1/75), and viscera (0/13). All 8 cellular, 4 microcystic/reticular, and 3 epithelioid schwannomas were fusion-negative, as were 41/42 nonschwannomatous peripheral nerve sheath tumors. Remarkably, a distinct 'serpentine' palisading pattern, comprising ovoid/plump cells shorter than usual schwannian cells in a hyalinized stroma, was identified in most fusion-positive cases and the schwannomatous component of the only fusion-positive malignant peripheral nerve sheath tumor. To validate this finding, 60 additional cases were collected, including 36 with (≥10% arbitrarily) and 24 without appreciable serpentine histology, of which 29 (80.6%) and 2 (8.3%) harbored the fusion, respectively. With percentages of 'serpentine' areas scored, 10% was determined as the optimal practical cut-off to predict the fusion status (sensitivity, 0.950; specificity, 0.943). Fusion positivity was significantly associated with serpentine histology, smaller tumors, younger patients, and peripheral somatic tissue, while multivariate logistic linear regression analysis only identified serpentine histology and location as independent fusion-predicting factors. RNA in situ hybridization successfully detected the fusion junction, highly concordant with RT-PCR results. Gene expression profiling on 18 schwannomas demonstrated segregation largely consistent with fusion status. Fusion-positive cases expressed significantly higher HTRA1 mRNA abundance, perhaps exploitable as a biomarker. In summary, we systematically characterize a series of 60 SH3PXD2A::HTRA1 fusion-positive schwannomas, showing their distinctive morphology and location-specific prevalence for the first time.


Subject(s)
Nerve Sheath Neoplasms , Neurilemmoma , Humans , Neurilemmoma/pathology , Nerve Sheath Neoplasms/pathology , Cell Transformation, Neoplastic , Adaptor Proteins, Vesicular Transport
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731977

ABSTRACT

Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.


Subject(s)
Cell Movement , Cell Proliferation , Exosomes , Keratinocytes , Mesenchymal Stem Cells , Wharton Jelly , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Wharton Jelly/cytology , Wharton Jelly/metabolism , Keratinocytes/metabolism , Keratinocytes/cytology , Fibrinogen/metabolism , Proteomics/methods , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cells, Cultured , Wound Healing , Proteome/metabolism
3.
BMC Microbiol ; 23(1): 198, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495951

ABSTRACT

BACKGROUND: Acanthamoeba castellanii is a free-living protist that feeds on diverse bacteria. A. castellanii has frequently been utilized in studies on microbial interactions. Grazing bacteria also exhibit diverse effects on the physiological characteristics of amoebae, such as their growth, encystation, and cytotoxicity. Since the composition of amoebae amino acids is closely related to cellular activities, it can indicate the overall responses of A. castellanii to various stimuli. METHOD: A. castellanii was exposed to different culture conditions in low-nutrient medium with heat-killed DH5α to clarify their effects. A targeted metabolomic technique was utilized to evaluate the concentration of cellular amino acids. The amino acid composition and pathways were analyzed by two web-based tools: MetaboAnalyst and Pathview. Then, long-term exposure to A. castellanii was investigated through in silico and in vitro methods to elucidate the homeostasis of amino acids and the growth of A. castellanii. RESULTS: Under short-term exposure, all kinds of amino acids were enriched in all exposed groups. In contrast to the presence of heat-killed bacteria, the medium exhibited obvious effects on the amino acid composition of A. castellanii. After long-term exposure, the amino acid composition was more similar to that of the control group. A. castellanii may achieve amino acid homeostasis through pathways related to alanine, aspartate, citrulline, and serine. DISCUSSION: Under short-term exposure, compared to the presence of bacteria, the type of medium exerted a more powerful effect on the amino acid composition of the amoeba. Previous studies focused on the interaction of the amoeba and bacteria with effective secretion systems and effectors. This may have caused the effects of low-nutrient environments to be overlooked. CONCLUSION: When A. castellanii was stimulated in the coculture system through various methods, such as the presence of bacteria and a low-nutrient environment, it accumulated intracellular amino acids within a short period. However, different stimulations correspond to different amino acid compositions. After long-term exposure, A. castellanii achieved an amino acid equilibrium by downregulating the biosynthesis of several amino acids.


Subject(s)
Acanthamoeba castellanii , Amino Acids , Escherichia coli , Acanthamoeba castellanii/chemistry , Acanthamoeba castellanii/growth & development , Acanthamoeba castellanii/physiology , Coculture Techniques , Amino Acids/analysis , Acclimatization , Hot Temperature , Culture Media
4.
J Child Psychol Psychiatry ; 64(9): 1280-1291, 2023 09.
Article in English | MEDLINE | ID: mdl-37016804

ABSTRACT

BACKGROUND: Dysbiosis in the gut microbial community might be involved in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). The fungal component of the gut microbiome, namely the mycobiota, is a hyperdiverse group of multicellular eukaryotes that can influence host intestinal permeability. This study therefore aimed to investigate the impact of fungal mycobiome dysbiosis and intestinal permeability on ADHD. METHODS: Faecal samples were collected from 35 children with ADHD and from 35 healthy controls. Total DNA was extracted from the faecal samples and the internal transcribed spacer regions were sequenced using high-throughput next-generation sequencing (NGS). The fungal taxonomic classification was analysed using bioinformatics tools and the differentially expressed fungal species between the ADHD and healthy control groups were identified. An in vitro permeability assay (Caco-2 cell layer) was used to evaluate the biological effects of fungal dysbiosis on intestinal epithelial barrier function. RESULTS: The ß-diversity (the species diversity between two communities), but not α-diversity (the species diversity within a community), reflected the differences in fungal community composition between ADHD and control groups. At the phylum level, the ADHD group displayed a significantly higher abundance of Ascomycota and a significantly lower abundance of Basidiomycota than the healthy control group. At the genus level, the abundance of Candida (especially Candida albicans) was significantly increased in ADHD patients compared to the healthy controls. In addition, the in vitro cell assay revealed that C. albicans secretions significantly enhanced the permeability of Caco-2 cells. CONCLUSIONS: The current study is the first to explore altered gut mycobiome dysbiosis using the NGS platform in ADHD. The findings from this study indicated that dysbiosis of the fungal mycobiome and intestinal permeability might be associated with susceptibility to ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Mycobiome , Child , Humans , Dysbiosis/microbiology , Caco-2 Cells , Candida/genetics
5.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628491

ABSTRACT

Placenta accreta spectrum (PAS) accounts for 7% of maternal mortality and is associated with intraoperative and postoperative morbidity caused by massive blood loss, infection, and adjacent organ damage. The aims of this study were to identify the protein biomarkers of PAS and to further explore their pathogenetic roles in PAS. For this purpose, we collected five placentas from pregnant subjects with PAS complications and another five placentas from normal pregnancy (NP) cases. Then, we enriched protein samples by specifically isolating the trophoblast villous, deeply invading into the uterine muscle layer in the PAS patients. Next, fluorescence-based two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-TOF/MS were used to identify the proteins differentially abundant between PAS and NP placenta tissues. As a result, nineteen spots were determined as differentially abundant proteins, ten and nine of which were more abundant in PAS and NP placenta tissues, respectively. Then, specific validation with western blot assay and immunohisto/cytochemistry (IHC) assay confirmed that heat shock 70 kDa protein 4 (HSPA4) and chorionic somatomammotropin hormone (CSH) were PAS protein biomarkers. Further tube formation assays demonstrated that HSPA4 promoted the in vitro angiogenesis ability of vessel endothelial cells, which is consistent with the in vivo scenario of PAS complications. In this study, we not only identified PAS protein biomarkers but also connected the promoted angiogenesis with placenta invasion, investigating the pathogenetic mechanism of PAS.


Subject(s)
HSP110 Heat-Shock Proteins , Placenta Accreta , Biomarkers , Cesarean Section , Endothelial Cells/pathology , Female , HSP110 Heat-Shock Proteins/metabolism , Humans , Placenta/pathology , Placenta Accreta/pathology , Placenta Accreta/surgery , Pregnancy
6.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055107

ABSTRACT

Psoriatic arthritis (PsA) results from joint destruction by osteoclasts. The promising efficacy of TNF-α blockage indicates its important role in osteoclastogenesis of PsA. WNT ligands actively regulate osteoclastogenesis. We investigated how WNT ligands activate osteoclasts amid the TNF-α milieu in PsA. We first profiled the expression of WNT ligands in CD14+ monocyte-derived osteoclasts (MDOC) from five PsA patients and five healthy controls (HC) and then validated the candidate WNT ligands in 32 PsA patients and 16 HC. Through RNA interference against WNT ligands in MDOC, we determined the mechanisms by which TNF-α exerts its effects on osteclastogenesis or chemotaxis. WNT5A was selectively upregulated by TNF-α in MDOC from PsA patients. The number of CD68+WNT5A+ osteoclasts increased in PsA joints. CXCL1, CXCL16, and MCP-1 was selectively increased in supernatants of MDOC from PsA patients. RNA interference against WNT5A abolished the increased MCP-1 from MDOC and THP-1-cell-derived osteoclasts. The increased migration of osteoclast precursors (OCP) induced by supernatant from PsA MDOC was abolished by the MCP-1 neutralizing antibody. WNT5A and MCP-1 expressions were decreased in MDOC from PsA patients treated by biologics against TNF-α but not IL-17. We conclude that TNF-α recruits OCP by increased MCP-1 production but does not directly activate osteoclastogenesis in PsA.


Subject(s)
Arthritis, Psoriatic/pathology , Chemokine CCL2/metabolism , Osteoclasts/pathology , Tumor Necrosis Factor-alpha/metabolism , Wnt-5a Protein/metabolism , Adult , Arthritis, Psoriatic/metabolism , Case-Control Studies , Cell Movement , Chemokine CCL2/genetics , Female , Humans , Lipopolysaccharide Receptors/metabolism , Male , Middle Aged , Osteoclasts/cytology , Osteoclasts/metabolism , THP-1 Cells , Up-Regulation , Wnt-5a Protein/genetics
7.
Int J Mol Sci ; 23(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36361563

ABSTRACT

Coronary artery lesions (CAL) are a major complication of Kawasaki disease (KD). The early prediction of CAL enables the medical personnel to apply adequate medical intervention. We collected the serum samples from the KD patients with CAL (n = 32) and those without CAL (n = 31), followed by a global screening with isobaric tagging for relative and absolute quantification (iTRAQ) technology and specific validation with an enzyme-linked immunosorbent assay (ELISA). iTRAQ identified 846 proteins in total in the serum samples, and four candidate proteins related to CAL were selected for ELISA validation as follows: Protein S100-A4 (S100A4), Catalase (CAT), Folate receptor gamma (FOLR3), and Galectin 10 (CLC). ELISA validation showed that the S100A4 level was significantly higher in KD patients with CAL than in those without CAL (225.2 ± 209.5 vs. 143.3 ± 83 pg/mL, p < 0.05). In addition, KD patients with CAL had a significantly lower CAT level than those without CAL (1.6 ± 1.5 vs. 2.7 ± 2.3 ng/mL, p < 0.05). Next, we found that S100A4 treatment on human coronary artery endothelial cells (HCAECs) reduced the abundance of cell junction proteins, which promoted the migration of HCAECs. Further assays also demonstrated that S100A4 treatment enhanced the permeability of the endothelial layer. These results concluded that S100A4 treatment resulted in an incompact endothelial layer and made HCAECs more susceptible to in vitro neutrophil infiltration. In addition, both upregulated S100A4 and downregulated CAT increased the risk of CAL in KD. Further in vitro study implied that S100A4 could be a potential therapeutic target for CAL in KD.


Subject(s)
Coronary Artery Disease , Mucocutaneous Lymph Node Syndrome , Humans , Mucocutaneous Lymph Node Syndrome/complications , Coronary Vessels/pathology , Neutrophil Infiltration , Endothelial Cells/pathology , Proteomics , Biomarkers , Coronary Artery Disease/drug therapy , Coronary Artery Disease/etiology , S100 Calcium-Binding Protein A4
8.
Eur Arch Psychiatry Clin Neurosci ; 270(8): 1037-1045, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31240443

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder often characterized by gray matter (GM) volume reductions. MicroRNAs, which participate in regulating gene expression, potentially influence neurodevelopment. This study aimed to explore whether differential GM volume is associated with differential miRNA levels in ADHD patients. We recruited a total of 30 drug-naïve patients with ADHD (mean age 10.6 years) and 25 healthy controls (mean age 10.6 years) that underwent a single session of 3.0-T whole brain structural MRI scanning. RNA samples from the participants' white blood cells were collected to identify the ΔCt values of three miRNAs (miR-30e-5p, miR-126-5p, and miR-140-3p) using the real-time quantitative reverse transcription polymerase chain reaction. In comparison to the control group, ADHD patients demonstrated a significantly lower GM volume in the cingulate gyrus, left middle temporal gyrus, right middle occipital gyrus, left fusiform gyrus, and significantly higher ΔCt values of miR-30e-5p, miR-126-5p, and miR-140-3p. In the ADHD group, the GM volume of cingulate gyrus and left fusiform gyrus was negatively correlated with the ΔCt values of miR-30e-5p, miR-140-3p. The GM volume of left fusiform gyrus was negatively correlated to ADHD behavioral symptoms. Using structural equation modeling (SEM), we observed that the effect of miR-140-3p on hyperactivity/impulsivity symptoms was mediated by left fusiform gyrus. Our findings support that GM volume reduction and miRNA increases may be biomarkers for ADHD in children and adolescents. Expression levels of miRNAs may affect the development of brain structures and further participate in the pathophysiology of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/blood , Attention Deficit Disorder with Hyperactivity/pathology , Attention Deficit Disorder with Hyperactivity/physiopathology , Cerebral Cortex/pathology , Gray Matter/pathology , MicroRNAs/blood , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Biomarkers , Cerebral Cortex/diagnostic imaging , Child , Female , Gene Expression/physiology , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male
9.
Eur Child Adolesc Psychiatry ; 29(3): 287-297, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31119393

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, but the underlying pathophysiological mechanisms of ADHD remain unclear. Gut microbiota has been recognized to influence brain function and behaviors. Therefore, this study aimed to determine whether imbalanced gut microbiomes identified by a 16S rRNA sequencing approach are involved in the pathophysiology of ADHD. We recruited a total of 30 children with ADHD (mean age: 8.4 years) and a total of 30 healthy controls (mean age: 9.3 years) for this study. The dietary patterns of all participants were assessed with the food frequency questionnaire. The microbiota of fecal samples were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. We found that the gut microbiota communities in ADHD patients showed a significantly higher Shannon index and Chao index than the control subjects. Furthermore, the linear discriminant analysis effect size (LEfSe) analysis was used to identify differentially enriched bacteria between ADHD patients and healthy controls. The relative abundance of Bacteroides coprocola (B. coprocola) was decreased, while the relative abundance of Bacteroides uniformis (B. uniformis), Bacteroides ovatus (B. ovatus), and Sutterella stercoricanis (S. stercoricanis) were increased in the ADHD group. Of all participants, S. stercoricanis demonstrated a significant association with the intake of dairy, nuts/seeds/legumes, ferritin and magnesium. B. ovatus and S. stercoricanis were positively correlated to ADHD symptoms. In conclusion, we suggest that the gut microbiome community is associated with dietary patterns, and linked to the susceptibility to ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Diet/methods , Gastrointestinal Microbiome/physiology , Child , Female , Humans , Male
10.
Int J Mol Sci ; 21(12)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560314

ABSTRACT

Psoriatic arthritis (PsA) is a destructive joint disease mediated by osteoclasts. MicroRNAs (miRNAs) regulate several important pathways in osteoclastogenesis. We profiled the expression of miRNAs in CD14+ monocytes from PsA patients and investigated how candidate microRNAs regulate the pathophysiology in osteoclastogenesis. The RNA from circulatory CD14+ monocytes was isolated from PsA patients, psoriasis patients without arthritis (PsO), and healthy controls (HCs). The miRNAs were initially profiled by next-generation sequencing (NGS). The candidate miRNAs revealed by NGS were validated by PCR in 40 PsA patients, 40 PsO patients, and 40 HCs. The osteoclast differentiation and its functional resorption activity were measured with or without RNA interference against the candidate miRNA. The microRNA-941 was selectively upregulated in CD14+ monocytes from PsA patients. Osteoclast development and resorption ability were increased in CD14+ monocytes from PsA patients. Inhibition of miR-941 abrogated the osteoclast development and function while increased the expression of WNT16. After successful treatment, the increased miR-941 expression in CD14+ monocytes from PsA patients was revoked. The expression of miR-941 in CD14+ monocytes is associated with PsA disease activity. MiR-941 enhances osteoclastogenesis in PsA via WNT16 repression. The miR-941 could be a potential biomarker and treatment target for PsA.


Subject(s)
Arthritis, Psoriatic/etiology , Arthritis, Psoriatic/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Monocytes/metabolism , Osteoclasts/metabolism , Wnt Proteins/metabolism , Adult , Aged , Arthritis, Psoriatic/diagnosis , Bone Resorption/genetics , Disease Susceptibility , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Lipopolysaccharide Receptors/metabolism , Male , Middle Aged , ROC Curve , Support Vector Machine
11.
Circ J ; 83(10): 2070-2078, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31378745

ABSTRACT

BACKGROUND: Kawasaki disease (KD) severely threatens young children's health worldwide. The pathogenic mechanism of KD has not yet been solved, so there is still debate over whether KD is an infectious disease or an autoimmune disease.Methods and Results:To solve this problem, an immune repertoire analysis of KD was conducted. We collected blood cell RNA samples and prepared them into amplicons with iRepertoire kits. The amplicons were sequenced and analyzed with the iRepertoire pipeline. We first identified KD-specific VJ and VDJ forms that had the potential to serve as biomarkers of KD. In addition, the KD-specific VDJ forms were contributed mostly by immunoglobulin G. The D50 value analysis showed that B-cell diversity in KD is decreased, suggesting unique immunoglobulins are produced in KD. Moreover, V, D and J segment usage in IgA, IgG and IgM was consistent with previous KD studies. Further comparison showed no difference in CDR3 peptide length between KD and fever controls (subjects with fever but not diagnosed as KD), indicting KD had B-cell selection phenomenon that has a non-autoimmune pattern. The comparison of amino acid usage of the CDR3 region demonstrated a preference for hydrophilic amino acids in KD. CONCLUSIONS: The results of D50 value, VDJ usage and CDR3 peptide length analyses suggested the characteristics of infectious disease for KD.


Subject(s)
Antibody Diversity , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , Immunoglobulin Variable Region , Immunoglobulins/immunology , Mucocutaneous Lymph Node Syndrome/immunology , Respiratory Tract Infections/immunology , V(D)J Recombination , Antibody Diversity/genetics , Autoimmune Diseases/diagnosis , Autoimmune Diseases/genetics , Case-Control Studies , Complementarity Determining Regions , Female , Humans , Immunoglobulin Class Switching , Immunoglobulin Joining Region , Immunoglobulins/genetics , Male , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/genetics , Risk Factors
12.
J Mol Cell Cardiol ; 117: 82-87, 2018 04.
Article in English | MEDLINE | ID: mdl-29501389

ABSTRACT

Kawasaki disease (KD) is the most common coronary vasculitis to appear in children with anemia and has been associated with elevated plasma hepcidin levels. We recruited a total of 241 cases, including 18 KD patients, who were tested both prior to receiving intravenous immunoglobulin (IVIG) and at least 3 weeks after IVIG treatment, and 18 febrile controls, who were observed in the Illumina HumanMethylation450 BeadChip study for their CpG markers. The remaining cases consisted of another 92 KD patients and 113 controls that were used for validation by pyrosequencing. We performed a genetic functional study using Luciferase assays. A support vector machine (SVM) classification model was adopted to identify KD patients and control subjects. In this study, KD patients clearly demonstrated a significantly epigenetic hypomethylation of HAMP promoter compared to controls. After receiving IVIG treatment, the hypomethylation status in KD patients was restored, and we observed a significant opposite tendency between the DNA methylation of target CpG sites (cg23677000 and cg04085447) and the hepcidin level. Furthermore, reporter gene assays were used to detect target CpG sites, the methylation of which displayed decreased levels of HAMP gene expression. Of particular note, we developed a SVM classification model with a 90.9% sensitivity, a 91.9% specificity, and 0.94 auROC in the training set. An independent blind cohort also had good performance (96.1% sensitivity and 89.7% specificity). In this study, we demonstrate HAMP promoter hypomethylation, which upregulates hepcidin expression in KD patients. Furthermore, the reliability and robustness of our SVM classification model can accurately serve as KD biomarkers.


Subject(s)
Biomarkers/blood , DNA Methylation/genetics , Hepcidins/genetics , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/genetics , Promoter Regions, Genetic , Base Sequence , Case-Control Studies , Child, Preschool , CpG Islands/genetics , Female , Hep G2 Cells , Humans , Male , Support Vector Machine
13.
BMC Genomics ; 18(1): 117, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28143393

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are important in various biological processes, but very few studies on lncRNA have been conducted in birds. To identify IncRNAs expressed during feather development, we analyzed single-stranded RNA-seq (ssRNA-seq) data from the anterior and posterior dorsal regions during zebra finch (Taeniopygia guttata) embryonic development. Using published transcriptomic data, we further analyzed the evolutionary conservation of IncRNAs in birds and amniotes. RESULTS: A total of 1,081 lncRNAs, including 965 intergenic lncRNAs (lincRNAs), 59 intronic lncRNAs, and 57 antisense lncRNAs (lncNATs), were identified using our newly developed pipeline. These avian IncRNAs share similar characteristics with lncRNAs in mammals, such as shorter transcript length, lower exon number, lower average expression level and less sequence conservation than mRNAs. However, the proportion of lncRNAs overlapping with transposable elements in birds is much lower than that in mammals. We predicted the functions of IncRNAs based on the enriched functions of co-expressed protein-coding genes. Clusters of lncRNAs associated with natal down development were identified. The sequences and expression levels of candidate lncRNAs that shared conserved sequences among birds were validated by qPCR in both zebra finch and chicken. Finally, we identified three highly conserved lncRNAs that may be associated with natal down development. CONCLUSIONS: Our study provides the first systematical identification of avian lncRNAs using ssRNA-seq analysis and offers a resource of embryonically expressed lncRNAs in zebra finch. We also predicted the biological function of identified lncRNAs.


Subject(s)
Evolution, Molecular , Finches/genetics , RNA, Long Noncoding/genetics , Transcriptome , Animals , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , Genomics/methods
14.
Int J Mol Sci ; 18(1)2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28106784

ABSTRACT

MicroRNA-29 (miR-29) is found to modulate hepatic stellate cells' (HSCs) activation and, thereby, reduces liver fibrosis pathogenesis. Histone methyltransferase regulation of epigenetic reactions reportedly participates in hepatic fibrosis. This study is undertaken to investigate the miR-29a regulation of the methyltransferase signaling and epigenetic program in hepatic fibrosis progression. miR-29a transgenic mice (miR-29aTg mice) and wild-type littermates were subjected to bile duct-ligation (BDL) to develop cholestatic liver fibrosis. Primary HSCs were transfected with a miR-29a mimic and antisense inhibitor. Profibrogenic gene expression, histone methyltransferases and global genetic methylation were probed with real-time quantitative RT-PCR, immunohistochemical stain, Western blot and ELISA. Hepatic tissue in miR-29aTg mice displayed weak fibrotic matrix as evidenced by Sirius Red staining concomitant with low fibrotic matrix collagen 1α1 expression within affected tissues compared to the wild-type mice. miR-29a overexpression reduced the BDL exaggeration of methyltransferases, DNMT1, DNMT3b and SET domain containing 1A (SET1A) expression. It also elevated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling within liver tissue. In vitro, miR-29a mimic transfection lowered collagen 1α1, DNMT1, DNMT3b and SET1A expression in HSCs. Gain of miR-29a signaling resulted in DNA hypomethylation and high PTEN expression. This study shines a new light on miR-29a inhibition of methyltransferase, a protective effect to maintain the DNA hypomethylation state that decreases fibrogenic activities in HSC. These robust analyses also highlight the miR-29a regulation of epigenetic actions to ameliorate excessive fibrosis during cholestatic liver fibrosis development.


Subject(s)
Bile Ducts/pathology , Disease Progression , Epigenesis, Genetic , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Methyltransferases/genetics , MicroRNAs/metabolism , Animals , Cholestasis/genetics , Collagen Type I/genetics , Collagen Type I/metabolism , DNA Methylation , Down-Regulation/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Ligation , Liver/metabolism , Liver/pathology , Liver Cirrhosis/enzymology , Methyltransferases/metabolism , Mice, Transgenic , MicroRNAs/genetics , Models, Biological , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
15.
Int J Mol Sci ; 18(8)2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28829370

ABSTRACT

The involvement of microRNAs (miRNAs) in cancer development and their potential as prognostic biomarkers are becoming increasingly known. However, the signature of miRNAs and their regulatory roles in tumorigenesis of upper tract urothelial carcinoma (UTUC) remain to be elucidated. This study aimed to profile the miRNA expression pattern in UTUC tumor tissues and identify candidate miRNAs with prognostic and/or therapeutic functions. METHODS AND RESULTS: We collected 22 UTUC tissue and adjacent normal tissues samples from patients who underwent nephroureterectomy. The miRNAs signatures of three selected UTUC samples using next-generation sequencing showed that miR-30a-5p was significantly downregulated in UTUC tumors compared to adjacent normal tissues. The differentially-expressed miRNAs were specifically validated by quantitative real-time polymerase chain reaction. In addition, the miRNA expression signatures were analyzed with the transcriptome profile characterized by microarray. Further in vitro studies indicated that overexpression of miR-30a-5p significantly suppressed proliferation, migration, and epithelial-to-mesenchymal transition (EMT) in cultured BFTC-909 UTUC cells. As a potential target gene of miR-30a-5p in the tight junction pathway suggested by the pathway enrichment analysis, the reduced expression of tight junction protein claudin-5 in UTUC cells was demonstrated to be upregulated by miR-30a-5p genetic delivery. CONCLUSIONS: Taken together, our findings demonstrated that miR-30a-5p inhibits proliferation, metastasis, and EMT, and upregulates the expression of tight junction claudin-5 in UTUC cells. Thus, miR-30a-5p may provide a promising therapeutic strategy for UTUC treatment.


Subject(s)
Claudin-5/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Urologic Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Real-Time Polymerase Chain Reaction , Tight Junctions/genetics , Tight Junctions/metabolism , Transcriptome , Urologic Neoplasms/metabolism , Urologic Neoplasms/pathology
16.
Exp Parasitol ; 166: 60-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26995533

ABSTRACT

Acanthamoeba keratitis (AK) is a serious ocular disease caused by pathogenic Acanthamoeba gaining entry through wounds in the corneal injury; generally, patients at risk for contracting AK wear contact lenses, usually over a long period of time. Moreover, pathogenic Acanthamoeba causes serious consequences: it makes the cornea turbid and difficult to operate on, including procedures such as enucleation of the eyeball. At present, diagnosis of this disease is not straightforward, and treatment is very demanding. We have established the comparative transcriptome and extracellular secreted proteomic database according to the non-pathogenic strain ATCC 30010 and the pathogenic strains NCKU_B and NCKU_D. We identified 44 secreted proteins successfully, 10 consensus secreted proteins and 34 strain-specific secreted proteins. These proteins may provide targets for therapy and immuno-diagnosis of Acanthamoeba infections. This study shows a suitable approach to identify secreted proteins in Acanthamoeba and provides new perspectives for the study of molecules potentially involved in the AK.


Subject(s)
Acanthamoeba castellanii/metabolism , Proteomics , Protozoan Proteins/metabolism , Acanthamoeba castellanii/classification , Acanthamoeba castellanii/genetics , Acanthamoeba castellanii/pathogenicity , Blotting, Western , Computational Biology , DNA, Complementary/biosynthesis , Electrophoresis, Gel, Two-Dimensional , Gene Ontology , Genotype , Protozoan Proteins/analysis , Protozoan Proteins/isolation & purification , RNA, Protozoan/genetics , RNA, Protozoan/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transcriptome
17.
Int J Mol Sci ; 17(3): 324, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26938532

ABSTRACT

UNLABELLED: Accumulating evidence demonstrates that microRNA-29 (miR-29) expression is prominently decreased in patients with hepatic fibrosis, which consequently stimulates hepatic stellate cells' (HSCs) activation. We used a cDNA microarray study to gain a more comprehensive understanding of genome-wide gene expressions by adjusting miR-29a expression in a bile duct-ligation (BDL) animal model. METHODS: Using miR-29a transgenic mice and wild-type littermates and applying the BDL mouse model, we characterized the function of miR-29a with regard to cholestatic liver fibrosis. Pathway enrichment analysis and/or specific validation were performed for differentially expressed genes found within the comparisons. RESULTS: Analysis of the microarray data identified a number of differentially expressed genes due to the miR-29a transgene, BDL, or both. Additional pathway enrichment analysis revealed that TGF-ß signaling had a significantly differential activated pathway depending on the occurrence of miR-29a overexpression or the lack thereof. Furthermore, overexpression was found to elicit changes in Wnt/ß-catenin after BDL. CONCLUSION: This study verified that an elevated miR-29a level could alleviate liver fibrosis caused by cholestasis. Furthermore, the protective effects of miR-29a correlate with the downregulation of TGF-ß and associated with Wnt/ß-catenin signal pathway following BDL.


Subject(s)
Cholestasis/complications , Liver Cirrhosis/complications , Liver/pathology , MicroRNAs/genetics , Signal Transduction , Animals , Cholestasis/genetics , Cholestasis/metabolism , Cholestasis/pathology , Intercellular Signaling Peptides and Proteins/analysis , Intercellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice , Transcriptome , Transforming Growth Factor beta/analysis , Transforming Growth Factor beta/metabolism , Up-Regulation , Wnt Signaling Pathway
18.
Int J Mol Sci ; 17(5)2016 May 12.
Article in English | MEDLINE | ID: mdl-27187366

ABSTRACT

Kawasaki disease (KD) is a type of systemic vasculitis that primarily affects children under the age of five years old. For sufferers of KD, intravenous immunoglobulin (IVIG) has been found to successfully diminish the occurrence of coronary artery lesions. Anemia is commonly found in KD patients, and we have shown that in appropriately elevated hepcidin levels are related to decreased hemoglobin levels in these patients. In this study, we investigated the time period of anemia and iron metabolism during different stages of KD. A total of 100 patients with KD and 20 control subjects were enrolled in this study for red blood cell and hemoglobin analysis. Furthermore, plasma, urine hepcidin, and plasma IL-6 levels were evaluated using enzyme-linked immunosorbent assay in 20 KD patients and controls. Changes in hemoglobin, plasma iron levels, and total iron binding capacity (TIBC) were also measured in patients with KD. Hemoglobin, iron levels, and TIBC were lower (p < 0.001, p = 0.009, and p < 0.001, respectively) while plasma IL-6 and hepcidin levels (both p < 0.001) were higher in patients with KD than in the controls prior to IVIG administration. Moreover, plasma hepcidin levels were positively and significantly correlated with urine hepcidin levels (p < 0.001) prior to IVIG administration. After IVIG treatment, plasma hepcidin and hemoglobin levels significantly decreased (both p < 0.001). Of particular note was a subsequent gradual increase in hemoglobin levels during the three weeks after IVIG treatment; nevertheless, the hemoglobin levels stayed lower in KD patients than in the controls (p = 0.045). These findings provide a longitudinal study of hemoglobin changes and among the first evidence that hepcidin induces transient anemia and hypoferremia during KD's acute inflammatory phase.


Subject(s)
Anemia, Iron-Deficiency/blood , Hepcidins/blood , Iron Deficiencies , Mucocutaneous Lymph Node Syndrome/blood , Adolescent , Anemia, Iron-Deficiency/complications , Case-Control Studies , Female , Hemoglobins/metabolism , Hepcidins/urine , Humans , Immunoglobulins, Intravenous/therapeutic use , Interleukin-6/blood , Iron/blood , Male , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/drug therapy
19.
J Radiat Res ; 65(1): 55-62, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37996087

ABSTRACT

Radiation-induced gastrointestinal damage is a common acute radiation syndrome. Previous studies have highlighted that Galectin-1 and Interleukin-6 (IL-6) are associated with flaking of small intestinal villi and intestinal radioresistance. Therefore, our goal is to study whether gut bacteria regulated by galectin-1 or IL-6 can mitigate radiation-induced small intestine damage. In this study, differences between galectin-1, sgp130-regulated and wild-type (WT) mice were analyzed by microbiome array. The effects of the Firmicutes/Bacteroidetes (F/B) ratio and the proportion of bacterial distribution at the phylum level were observed after 18 Gy whole abdomen radiation. Fecal microbiota transplantation was used to implant radioresistant gut flora into WT mice, and the number of viable small intestinal crypt foci was observed by immunohistochemistry. Fecal transplantation from galectin-1 knockout and sgp130 transgenic mice, with higher radiation resistance, into WT mice significantly increased the number of surviving small intestinal crypts. This radiation resistance, generated through gene regulation, was not affected by the F/B ratio. We initially found that the small intestinal villi of WT mice receiving radioresistant mouse fecal bacteria demonstrated better repair outcomes after radiation exposure. These results indicate the need for a focus on the identification and application of superior radioresistant bacterial strains. In our laboratory, we will further investigate specific radioresistant bacterial strains to alleviate acute side effects of radiation therapy to improve the patients' immune ability and postoperative quality of life.


Subject(s)
Galectin 1 , Gastrointestinal Microbiome , Humans , Mice , Animals , Galectin 1/pharmacology , Interleukin-6/pharmacology , Cytokine Receptor gp130 , Quality of Life , Intestine, Small
20.
Biomedicines ; 12(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38672131

ABSTRACT

Psoriatic arthritis (PsA) is a chronic inflammatory arthritis primarily affecting peripheral and axial joints. The osteolytic effect in the damaged joint is mediated by osteoclast activation. We aimed to investigate differential gene expression in peripheral CD14+ monocytes between patients with psoriatic arthritis (n = 15) and healthy controls (HCs; n = 15). Circulating CD14+ monocytes were isolated from peripheral blood mononuclear cells using CD14+ magnetic beads. Cell apoptosis was measured via Annexin V using flow cytometry. The gene expression profiling was analyzed via microarray (available in the NCBI GEO database; accession number GSE261765), and the candidate genes were validated using PCR. The results showed a higher number of peripheral CD14+ monocytes in patients with PsA than in the HCs. By analyzing the microarray data, identifying the differentially expressed genes, and conducting pathway enrichment analysis, we found that the apoptosis signaling pathway in CD14+ cells was significantly impaired in patients with PsA compared to the HCs. Among the candidate genes in the apoptotic signaling pathway, the relative expression level of cathepsin L was confirmed to be significantly lower in the PsAs than in the HCs. We concluded that the numbers of peripheral CD14+ monocytes increased, and their apoptosis activity was impaired in patients with PsA, which could lead to enhanced macrophage maturation and osteoclast activation. The resistance of apoptotic death in peripheral CD14+ monocytes may contribute to active joint inflammation in PsA.

SELECTION OF CITATIONS
SEARCH DETAIL