Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Drug Resist Updat ; 75: 101098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833804

ABSTRACT

Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.


Subject(s)
Antigen-Presenting Cells , Cancer Vaccines , Immunotherapy , Nanoparticles , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Nanoparticles/administration & dosage , Antigen-Presenting Cells/immunology , Biomimetics/methods , Biomimetic Materials/administration & dosage , Animals , Liposomes , Nanovaccines
2.
Inorg Chem ; 63(4): 2138-2147, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38237037

ABSTRACT

Expediting the torpid kinetics of the oxygen reduction reaction (ORR) at the cathode with minimal amounts of Pt under acidic conditions plays a significant role in the development of proton exchange membrane fuel cells (PEMFCs). Herein, a novel Pt-N-C system consisting of Pt single atoms and nanoparticles anchored onto the defective carbon nanofibers is proposed as a highly active ORR catalyst (denoted as Pt-N-C). Detailed characterizations together with theoretical simulations illustrate that the strong coupling effect between different Pt sites can enrich the electron density of Pt sites, modify the d-band electronic environments, and optimize the oxygen intermediate adsorption energies, ultimately leading to significantly enhanced ORR performance. Specifically, the as-designed Pt-N-C demonstrates exceptional ORR properties with a high half-wave potential of 0.84 V. Moreover, the mass activity of Pt-N-C reaches 193.8 mA gPt-1 at 0.9 V versus RHE, which is 8-fold greater than that of Pt/C, highlighting the enormously improved electrochemical properties. More impressively, when integrated into a membrane electrode assembly as cathode in an air-fed PEMFC, Pt-N-C achieved a higher maximum power density (655.1 mW cm-2) as compared to Pt/C-based batteries (376.25 mW cm-2), hinting at the practical application of Pt-N-C in PEMFCs.

3.
Inorg Chem ; 63(21): 10092-10098, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38748447

ABSTRACT

Exploring efficient alkaline hydrogen oxidation reaction (HOR) electrocatalysts is of great concern for constructing anion exchange membrane fuel cells (AEMFCs). Herein, d-band center modulated PdCo alloys with ultralow Pd content anchored onto the defective carbon support (abbreviated as PdCo/NC hereafter) are proposed as highly efficient HOR catalyst. The as-prepared catalyst exhibits exceptional HOR performance compared to the Pt/C catalyst, achieving thermodynamically spontaneous and kinetically preferential reactions. Specifically, the resultant PdCo/NC demonstrates a marked enhancement in alkaline HOR performance, with the highest mass and specific activities of 1919.6 mA mgPd-1 and 1.9 mA cm-2, 51.1 and 4.2 times higher than those of benchmark of Pt/C, along with an excellent stability in a chronoamperometry test. In the analysis of in situ Raman spectra, it was discovered that tetrahedrally coordinated H-bonded water molecules were formed during the HOR process. This indicates that the promotion of interfacial water molecule formation and enhancement of HOR activities in PdCo/NC are facilitated by defect engineering and the turning of d-band center in PdCo alloy. The essential knowledge obtained in this study could open up a new direction for modifying the electronic structure of cost-effective HOR catalysts through electronic structure engineering.

4.
J Nanobiotechnology ; 22(1): 429, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033109

ABSTRACT

Pazopanib (PAZ), an oral multi-tyrosine kinase inhibitor, demonstrates promising cytostatic activities against various human cancers. However, its clinical utility is limited by substantial side effects and therapeutic resistance. We developed a nanoplatform capable of delivering PAZ for enhanced anti-breast cancer therapy. Nanometer-sized PAZ@Fe-MOF, compared to free PAZ, demonstrated increased anti-tumor therapeutic activities in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. High-throughput single-cell RNA sequencing (scRNAseq) revealed that PAZ@Fe-MOF significantly reduced pro-tumorigenic M2-like macrophage populations at tumor sites and suppressed M2-type signaling pathways, such as ATF6-TGFBR1-SMAD3, as well as chemokines including CCL17, CCL22, and CCL24. PAZ@Fe-MOF reprogramed the inhibitory immune microenvironment and curbed tumorigenicity by blocking the polarization of M2 phenotype macrophages. This platform offers a promising and new strategy for improving the cytotoxicity of PAZ against breast cancers. It provides a method to evaluate the immunological response of tumor cells to PAZ-mediated treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Indazoles , Macrophages , Metal-Organic Frameworks , Nanoparticles , Pyrimidines , Sulfonamides , Animals , Female , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Breast Neoplasms/drug therapy , Humans , Macrophages/drug effects , Indazoles/pharmacology , Indazoles/chemistry , Mice , Pyrimidines/pharmacology , Pyrimidines/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
5.
Ecotoxicol Environ Saf ; 277: 116372, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38669875

ABSTRACT

Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.


Subject(s)
Adenosine , Carcinogenesis , Environmental Pollutants , Adenosine/analogs & derivatives , Carcinogenesis/chemically induced , Environmental Pollutants/toxicity , Humans , Methylation , Animals , RNA/genetics , RNA Methylation
6.
Phytother Res ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761036

ABSTRACT

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

7.
Small ; 19(30): e2207604, 2023 07.
Article in English | MEDLINE | ID: mdl-37066699

ABSTRACT

Glioblastoma (GBM) is a highly aggressive cancer that currently lacks effective treatments. Pyroptosis has emerged as a promising therapeutic approach for cancer, but there is still a need for new pyroptosis boosters to target cancer cells. In this study, it is reported that Aloe-emodin (AE), a natural compound derived from plants, can inhibit GBM cells by inducing pyroptosis, making it a potential booster for pyroptosis-mediated GBM therapy. However, administering AE is challenging due to the blood-brain barrier (BBB) and its non-selectivity. To overcome this obstacle, AE@ZIF-8 NPs are developed, a biomineralized nanocarrier that releases AE in response to the tumor's acidic microenvironment (TAM). Further modification of the nanocarrier with transferrin (Tf) and polyethylene glycol-poly (lactic-co-glycolic acid) (PEG-PLGA) improves its penetration through the BBB and tumor targeting, respectively. The results show that AE-NPs (Tf-PEG-PLGA modified AE@ZIF-8 NPs) significantly increase the intracranial distribution and tumor tissue accumulation, enhancing GBM pyroptosis. Additionally, AE-NPs activate antitumor immunity and reduce AE-related toxicity. Overall, this study provides a new approach for GBM therapy and offers a nanocarrier that is capable of penetrating the BBB, targeting tumors, and attenuating toxicity.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Humans , Glioblastoma/pathology , Pyroptosis , Cell Line, Tumor , Transferrin , Brain Neoplasms/drug therapy , Tumor Microenvironment
8.
Inorg Chem ; 62(26): 10504-10512, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37338465

ABSTRACT

Exploring high-performance non-precious metal-based electrocatalysts for the sluggish oxygen evolution reaction (OER) process is fundamentally significant for the development of multifarious renewable energy conversion and storage systems. Oxygen vacancy (Vo) engineering is an effective leverage to boost the intrinsic activity of OER, but the underlying catalytic mechanism remains anfractuous. Herein, we realize the construction of oxygen vacancy-enriched porous NiO/ln2O3 nanofibers (designated as Vo-NiO/ln2O3@NFs hereafter) via a facile fabrication strategy for efficient oxygen evolution electrocatalysis. Theoretical calculations and experimental results uncover that, compared with the no-plasma engraving component, the presence of abundant oxygen vacancies in the Vo-NiO/ln2O3@NFs is conducive to modulating the electronic configuration of the catalyst, altering the adsorption of intermediates to reduce the OER overpotential and promote O* formation, upshifting the d band center of metal centers near the Fermi level (Ef), and also increasing the electrical conductivity and enhancing the OER reaction kinetics simultaneously. In situ Raman spectra proclaim that the oxygen vacancy can render the NiO/ln2O3 more easily reconstructible on the surface during the OER course. Therefore, the as-obtained Vo-NiO/ln2O3@NFs demonstrated distinguished OER activity, with an overpotential of only 230 mV at 10 mA cm-2 and excellent stability in alkaline medium, surmounting the majority of the previously reported representative non-noble metal-based candidates. The fundamental insights gained from this work can pave a new path for the electronic structure modulation of efficient, inexpensive OER catalysts via Vo engineering.

9.
Platelets ; 34(1): 2166677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36719251

ABSTRACT

In our previous study, target drug delivery and treatment of malignant tumors have been achieved by using platelets as carriers loading nano-chemotherapeutic agents (ND-DOX). However, drug release from ND-DOX-loaded platelets is dependent on negative platelet activation by tumor cells, whose activation is not significant enough for the resulting drug release to take an effective anti-tumor effect. Exploring strategies to proactively manipulate the controlled release of drug-laden platelets is imperative. The present study innovatively revealed that photodynamic action can activate platelets in a spatiotemporally controlled manner. Consequently, based on the previous study, platelets were used to load iron oxide-polyglycerol-doxorubicin-chlorin e6 composites (IO-PG-DOX-Ce6), wherein the laser-triggered drug release ability and anti-tumor capability were demonstrated. The findings suggested that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability. Importantly and interestingly, drug-loaded platelets were significantly activated by laser irradiation, characterized by intracellular ROS accumulation and up-regulation of CD62p. Additionally, scanning electron microscopy (SEM) and hydrated particle size results also showed a significant aggregation response of laser irradiated-drug-loaded platelets. Further transmission electron microscopy (TEM) measurements indicated that the activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells. Finally, the co-culture model of drug-loaded platelets and tumor cells proved that laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells. Overall, the present study discovers a drug-loaded platelets delivery using photodynamic effect, enabling laser-controlled intelligent drug delivery and anti-tumor therapy, which provides a novel and feasible approach for clinical application of cytopharmaceuticals.


What is the context?1. Platelets were applied to load IO-PG-DOX-Ce6, wherein the laser-triggered drug release and anti-tumor effect were investigated in vitro.2. The findings indicated that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability, which may attribute to the activation of autophagy in platelets.3. IO-PG-DOX-Ce6-loaded platelets could be significantly activated by laser irradiation (690 nm).4. Activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells5. The co-culture model of drug-loaded platelets and tumor cells proved that the laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells.What is new?1. Platelets could be utilized as the vehicle to load photosensitizer-loaded-nano-drug.2. Photodynamic action can activate platelets in a spatiotemporally controlled manner, which could be a tool to regulate the activation of platelets.3. The laser-triggered activation of drug-loaded platelets allows for target release of cargo.4. The limitation of the current research is that only in vitro experiments were carried out to demonstrate our conclusions.What is impact?The present work provides a novel and feasible approach for the clinical application of cytopharmaceuticals.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Drug Delivery Systems/methods , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Lasers
10.
J Nanobiotechnology ; 21(1): 204, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386404

ABSTRACT

Dihydroartemisinin (DHA), a natural product derived from the herbal medicine Artemisia annua, is recently used as a novel anti-cancer agent. However, some intrinsic disadvantages limit its potential for clinical management of cancer patients, such as poor water solubility and low bioavailability. Nowadays, the nanoscale drug delivery system emerges as a hopeful platform for improve the anti-cancer treatment. Accordingly, a metal-organic framework (MOF) based on zeolitic imidazolate framework-8 was designed and synthesized to carry DHA in the core (ZIF-DHA). Contrast with free DHA, these prepared ZIF-DHA nanoparticles (NPs) displayed preferable anti-tumor therapeutic activity in several ovarian cancer cells accompanied with suppressed production of cellular reactive oxygen species (ROS) and induced apoptotic cell death. 4D-FastDIA-based mass spectrometry technology indicated that down-regulated reactive oxygen species modulator 1 (ROMO1) might be regarded as potential therapeutic targets for ZIF-DHA NPs. Overexpression of ROMO1 in ovarian cancer cells significantly reversed the cellular ROS-generation induced by ZIF-DHA, as well as the pro-apoptosis effects. Taken together, our study elucidated and highlighted the potential of zeolitic imidazolate framework-8-based MOF to improve the activity of DHA to treat ovarian cancer. Our findings suggested that these prepared ZIF-DHA NPs could be an attractive therapeutic strategy for ovarian cancer.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Ovarian Neoplasms , Humans , Female , Reactive Oxygen Species , Ovarian Neoplasms/drug therapy , Apoptosis , Membrane Proteins , Mitochondrial Proteins
11.
J Nanobiotechnology ; 21(1): 337, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735449

ABSTRACT

Staging lymph nodes (LN) is crucial in diagnosing and treating cancer metastasis. Biotechnologies for the specific localization of metastatic lymph nodes (MLNs) have attracted significant attention to efficiently define tumor metastases. Bioimaging modalities, particularly magnetic nanoparticles (MNPs) such as iron oxide nanoparticles, have emerged as promising tools in cancer bioimaging, with great potential for use in the preoperative and intraoperative tracking of MLNs. As radiation-free magnetic resonance imaging (MRI) probes, MNPs can serve as alternative MRI contrast agents, offering improved accuracy and biological safety for nodal staging in cancer patients. Although MNPs' application is still in its initial stages, exploring their underlying mechanisms can enhance the sensitivity and multifunctionality of lymph node mapping. This review focuses on the feasibility and current application status of MNPs for imaging metastatic nodules in preclinical and clinical development. Furthermore, exploring novel and promising MNP-based strategies with controllable characteristics could lead to a more precise treatment of metastatic cancer patients.


Subject(s)
Magnetite Nanoparticles , Neoplasms , Humans , Neoplasms/diagnostic imaging , Physical Phenomena , Biotechnology , Lymph Nodes/diagnostic imaging
12.
Small ; 18(13): e2106592, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35122468

ABSTRACT

Designing affordable and efficient bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has remained a long-lasting target for the progressing hydrogen economy. Utilization of metal/semiconductor interface effect has been lately established as a viable implementation to realize the favorable electrocatalytic performance due to the built-in electric field. Herein, a typical Mott-Schottky electrocatalyst by immobilizing Ni/CeO2 hetero-nanoparticles onto N-doped carbon nanofibers (abbreviated as Ni/CeO2 @N-CNFs hereafter) has been developed via a feasible electrospinning-carbonization tactic. Experimental findings and theoretic calculations substantiate that the elaborated constructed Ni/CeO2 heterojunction effectively triggers the self-driven charge transfer on heterointerfaces, leading to the promoted charge transfer rate, the optimized chemisorption energies for reaction intermediates and ultimately the expedited reaction kinetics. Therefore, the well-designed Ni/CeO2 @N-CNFs deliver superior HER and OER catalytic activities with overpotentials of 100 and 230 mV at 10 mA cm-2 , respectively, in alkaline solution. Furthermore, the Ni/CeO2 @N-CNFs-equipped electrolyzer also exhibits a low cell voltage of 1.56 V to attain 10 mA cm-2 and impressive long-term durability over 55 h. The innovative manipulation of electronic modulation via Mott-Schottky establishment may inspire the future development of economical electrocatalysts for diverse sustainable energy systems.

13.
J Nanobiotechnology ; 20(1): 230, 2022 May 14.
Article in English | MEDLINE | ID: mdl-35568865

ABSTRACT

BACKGROUND: Chemodynamic therapy (CDT) relying on intracellular iron ions and H2O2 is a promising therapeutic strategy due to its tumor selectivity, which is limited by the not enough metal ions or H2O2 supply of tumor microenvironment. Herein, we presented an efficient CDT strategy based on Chinese herbal monomer-dihydroartemisinin (DHA) as a substitute for the H2O2 and recruiter of iron ions to amplify greatly the reactive oxygen species (ROS) generation for synergetic CDT-ferroptosis therapy. RESULTS: The DHA@MIL-101 nanoreactor was prepared and characterized firstly. This nanoreactor degraded under the acid tumor microenvironment, thereby releasing DHA and iron ions. Subsequent experiments demonstrated DHA@MIL-101 significantly increased intracellular iron ions through collapsed nanoreactor and recruitment effect of DHA, further generating ROS thereupon. Meanwhile, ROS production introduced ferroptosis by depleting glutathione (GSH), inactivating glutathione peroxidase 4 (GPX4), leading to lipid peroxide (LPO) accumulation. Furthermore, DHA also acted as an efficient ferroptosis molecular amplifier by direct inhibiting GPX4. The resulting ROS and LPO caused DNA and mitochondria damage to induce apoptosis of malignant cells. Finally, in vivo outcomes evidenced that DHA@MIL-101 nanoreactor exhibited prominent anti-cancer efficacy with minimal systemic toxicity. CONCLUSION: In summary, DHA@MIL-101 nanoreactor boosts CDT and ferroptosis for synergistic cancer therapy by molecular amplifier DHA. This work provides a novel and effective approach for synergistic CDT-ferroptosis with Chinese herbal monomer-DHA and Nanomedicine.


Subject(s)
Ferroptosis , Neoplasms , Artemisinins , Cell Line, Tumor , Glutathione , Humans , Hydrogen Peroxide , Iron , Nanomedicine , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Tumor Microenvironment
14.
Mol Pharm ; 18(9): 3601-3615, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34388342

ABSTRACT

Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Chlorophyllides/administration & dosage , Melanoma/drug therapy , Nanoparticle Drug Delivery System/chemistry , Skin Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Cell Line, Tumor , Chlorophyllides/chemistry , Chlorophyllides/pharmacokinetics , Disease Models, Animal , Doxorubicin/administration & dosage , Female , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Melanoma/pathology , Mice , Photochemotherapy , Skin Neoplasms/pathology , Solubility , Tissue Distribution
15.
J Nanobiotechnology ; 19(1): 268, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488792

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) are the most abundant stromal cells in the tumor microenvironment. Turning the TAMs against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically "cold" tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells' immunogenicity and thereby reactivate the TAMs into the anti-tumor M1 phenotype. RESULTS: Nano-DOX were first shown to stimulate the tumor cells and the TAMs to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAMs. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1's action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAMs both by blocking Nano-DOX-induced PD-L1 in the TAMs and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAMs with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX's action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. CONCLUSIONS: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAMs to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAMs, achieves enhanced activation of TAM-mediated anti-tumor response.


Subject(s)
B7-H1 Antigen/drug effects , Doxorubicin/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Nanodiamonds/chemistry , Tumor-Associated Macrophages , A549 Cells , Animals , B7-H1 Antigen/genetics , Cell Line, Tumor , Cytokines/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Microenvironment/drug effects
16.
Physica A ; 565: 125578, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35875203

ABSTRACT

The rapid-developed COVID-19 has been defined as a global emergency by the World Health Organization. Meanwhile, various evidence indicates there is a positive correlation between the transmission and population density, especially in closed and semi-closed space. The urban rail transit, as one of the major mode choices for people to commute in big cities, carries thousands of passengers every day with relatively closed and limited space, which provides favorable conditions for the spread of the virus. If the surrounding area of any station was disrupted under COVID-19, not only the individual line but also the entire urban rail transit network will have the risk to be affected. Therefore, it is necessary to identify and explore the distribution law of key stations during the spreading process of the COVID-19 virus in the urban rail transit network during the COVID-19 pandemic. Based on the spatial distribution of epidemic area and the demand of urban rail transit passengers, we have proposed a construction method of the rail transit network and use the improved shortest path algorithm to determine the route diversity index of each station which indicates its importance in the urban rail transit network. On this basis, we identify the key stations of the Beijing rail transit network to ensure that passengers avoid high-risk stations during the epidemic. The results show that the number of reasonable routes between any two stations is 1 to 5 during the COVID-19 pandemic. Moreover, the routes diversity index of the Beijing rail transit network was 1.235 during the COVID-19 pandemic and 2.2574 in the normal period. According to the reasonable route diversity index, we have identified the key stations of the Beijing rail transit network during the COVID-19, such as Qi-Li-Zhuang station.

17.
Biomark Res ; 12(1): 2, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38185685

ABSTRACT

The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.

18.
Article in English | MEDLINE | ID: mdl-38597996

ABSTRACT

We have previously identified a latent interaction mechanism between non-small cell lung cancer cells (NSCLCC) and their associated macrophages (TAM) mediated by mutual paracrine activation of the HMGB1/RAGE/NF-κB signaling. Activation of this mechanism results in TAM stimulation and PD-L1 upregulation in the NSCLCC. In the present work, we found that free DOX at a low concentration that does not cause DNA damage could activate the HMGB1/RAGE/NF-κB/PD-L1 pathway byinducing oxidative stress. It was thus proposed that a combination of low-dose DOX and a PD-L1 blocker delivered in the NSCLC tumor would achieve synergistic TAM stimulation and thereby synergetic anti-tumor potency. To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. In vitro experiments then demonstrated that low-dose DOX and BMS-202 delivered via BMS-202/DOX@BP under mild photothermia displayed enhanced tumor cell toxicity with a potent synergism only in the presence of TAM. This enhanced synergism was due to an anti-tumor M1-like TAM phenotype that was synergistically induced by low dose DOX plus BMS-202 only in the presence of the tumor cells, indicating the damaged tumor cells to be the cardinal contributor to the M1-like TAM stimulation. In vivo, BMS-202/DOX@BP under mild photothermia exhibited targeted delivery to NSCLC graft tumors in mice and synergistic anti-tumor efficacy of delivered DOX and BMS-202. In conclusion, low-dose DOX in combination with a PD-L1 blocker is an effective strategy to turn TAM against their host tumor cells exploiting the HMGB1/RAGE/NF-κB/PD-L1 pathway. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.

19.
Photodiagnosis Photodyn Ther ; 45: 103917, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042236

ABSTRACT

OBJECTIVE: Photodynamic therapy (PDT) primarily treats skin diseases or cancer by generating reactive oxygen species (ROS) to damage cellular DNA, yet drug resistance limits its application. To tackle this problem, the present study was carried out to improve the efficacy of chlorin e6 (Ce6)-PDT using Cepharanthine (CEP) as well as to reveal the potential molecular mechanism. MATERIALS AND METHODS: Lewis lung cancer cell line (LLC) was utilized as the cancer cell model. chlorin e6 (Ce6) acted as the photosensitizer to induce PDT. The in vitro anti-cancer efficacy was measured by CCK-8, Annexin-V/PI staining, and migration assay. The Ce6 uptake was observed using flow cytometry and confocal microscopy. The ROS generation was detected by the DCFH-DA probe. The analysis of MutT Homolog 1 (MTH1) expression, correlation, and prognosis in databases was conducted by bioinformatic. The MTH1 expression was detected through western blots (WB). DNA damage was assayed by WB, immunofluorescent staining, and comet assay. RESULTS: Ce6-PDT showed robust resistance in lung cancer cells under certain conditions, as evidenced by the unchanged cell viability and apoptosis. The subsequent findings confirmed that the uptake of Ce6 and MTH1 expression was enhanced, but ROS generation with laser irradiation was not increased in LLC, which indicated that the ROS scavenge may be the critical reason for resistance. Surprisingly, bioinformatic and in vitro experiments identified that MTH1, which could prevent the DNA from damage of ROS, was highly expressed in lung cancer and thereby led to the poor prognosis and could be further up-regulated by Ce6 PDT. CEP exhibited a dose-dependent suppressive effect on the lung cancer cells. Further investigations presented that CEP treatment boosted ROS production, thereby resulting in DNA double-strand breakage (DDSB) with activation of MTH1, indicating that CEP facilitated Ce6-PDT-mediated DNA damage. Finally, the combination of CEP and Ce6-PDT exhibited prominent ROS accumulation, MTH1 inhibition, and anti-lung cancer efficacy, which had synergistic pro-DNA damage properties. CONCLUSION: Collectively, highly expressed MTH1 and the failure of ROS generation lead to PDT resistance in lung cancer cells. CEP facilitates ROS generation of PDT, thereby promoting vigorous DNA damage, inactivating MTH1, alleviating PDT resistance, and ameliorating the anti-cancer efficacy of Ce6-PDT, provides a novel approach for augmented PDT.


Subject(s)
Benzodioxoles , Benzylisoquinolines , Lung Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Lung Neoplasms/drug therapy , DNA Damage , DNA
20.
Eur J Pharmacol ; 979: 176839, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033838

ABSTRACT

BACKGROUND: Severe endoplasmic reticulum (ER) stress elicits apoptosis to suppress lung cancer. Our previous research identified that Cepharanthine (CEP), a kind of phytomedicine, possessed powerful anti-cancer efficacy, for which the underlying mechanism was still uncovered. Herein, we investigated how CEP induced ER stress and worked against lung cancer. METHODS: The differential expression genes (DEGs) and enrichment were detected by RNA-sequence. The affinity of CEP and NRF2 was analyzed by cellular thermal shift assay (CETSA) and molecular docking. The function assay of lung cancer cells was measured by western blots, flow cytometry, immunofluorescence staining, and ferroptosis inhibitors. RESULTS: CEP treatment enriched DEGs in ferroptosis and ER stress. Further analysis demonstrated the target was NRF2. In vitro and in vivo experiments showed that CEP induced obvious ferroptosis, as characterized by the elevated iron ions, ROS, COX-2 expression, down-regulation of GPX4, and atrophic mitochondria. Moreover, enhanced Grp78, CHOP expression, ß-amyloid mass, and disappearing parallel stacked structures of ER were observed in CEP group, suggesting ER stress was aroused. CEP exhibited excellent anti-lung cancer efficacy, as evidenced by the increased apoptosis, reduced proliferation, diminished cell stemness, and prominent inhibition of tumor grafts in animal models. Furthermore, the addition of ferroptosis inhibitors weakened CEP-induced ER stress and apoptosis. CONCLUSION: In summary, our findings proved CEP drives ferroptosis through inhibition of NRF2 for induction of robust ER stress, thereby leading to apoptosis and attenuated stemness of lung cancer cells. The current work presents a novel mechanism for the anti-tumor efficacy of the natural compound CEP.

SELECTION OF CITATIONS
SEARCH DETAIL