Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.254
Filter
Add more filters

Publication year range
1.
Cell ; 187(9): 2336-2341.e5, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38582080

ABSTRACT

The Genome Aggregation Database (gnomAD), widely recognized as the gold-standard reference map of human genetic variation, has largely overlooked tandem repeat (TR) expansions, despite the fact that TRs constitute ∼6% of our genome and are linked to over 50 human diseases. Here, we introduce the TR-gnomAD (https://wlcb.oit.uci.edu/TRgnomAD), a biobank-scale reference of 0.86 million TRs derived from 338,963 whole-genome sequencing (WGS) samples of diverse ancestries (39.5% non-European samples). TR-gnomAD offers critical insights into ancestry-specific disease prevalence using disparities in TR unit number frequencies among ancestries. Moreover, TR-gnomAD is able to differentiate between common, presumably benign TR expansions, which are prevalent in TR-gnomAD, from those potentially pathogenic TR expansions, which are found more frequently in disease groups than within TR-gnomAD. Together, TR-gnomAD is an invaluable resource for researchers and physicians to interpret TR expansions in individuals with genetic diseases.


Subject(s)
Genome, Human , Tandem Repeat Sequences , Humans , Tandem Repeat Sequences/genetics , Whole Genome Sequencing , Databases, Genetic , DNA Repeat Expansion/genetics , Genome-Wide Association Study
2.
Cell ; 187(17): 4674-4689.e18, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38981481

ABSTRACT

All-RNA-mediated targeted gene integration methods, rendering reduced immunogenicity, effective deliverability with non-viral vehicles, and a low risk of random mutagenesis, are urgently needed for next-generation gene addition technologies. Naturally occurring R2 retrotransposons hold promise in this context due to their site-specific integration profile. Here, we systematically analyzed the biodiversity of R2 elements and screened several R2 orthologs capable of full-length gene insertion in mammalian cells. Robust R2 system gene integration efficiency was attained using combined donor RNA and protein engineering. Importantly, the all-RNA-delivered engineered R2 system showed effective integration activity, with efficiency over 60% in mouse embryos. Unbiased high-throughput sequencing demonstrated that the engineered R2 system exhibited high on-target integration specificity (99%). In conclusion, our study provides engineered R2 tools for applications based on hit-and-run targeted DNA integration and insights for further optimization of retrotransposon systems.


Subject(s)
RNA , Retroelements , Animals , Retroelements/genetics , Mice , Humans , RNA/genetics , RNA/metabolism , HEK293 Cells , Genetic Engineering/methods , Gene Targeting/methods
3.
Cell ; 187(3): 764-781.e14, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306985

ABSTRACT

Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.


Subject(s)
Metabolomics , Pregnancy , Animals , Female , Humans , Pregnancy/metabolism , Corticosterone/metabolism , Metabolome/physiology , Placenta/metabolism , Pre-Eclampsia , Primates/metabolism
4.
Cell ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39270656

ABSTRACT

In a rigorous 40-month study, we evaluated the geroprotective effects of metformin on adult male cynomolgus monkeys, addressing a gap in primate aging research. The study encompassed a comprehensive suite of physiological, imaging, histological, and molecular evaluations, substantiating metformin's influence on delaying age-related phenotypes at the organismal level. Specifically, we leveraged pan-tissue transcriptomics, DNA methylomics, plasma proteomics, and metabolomics to develop innovative monkey aging clocks and applied these to gauge metformin's effects on aging. The results highlighted a significant slowing of aging indicators, notably a roughly 6-year regression in brain aging. Metformin exerts a substantial neuroprotective effect, preserving brain structure and enhancing cognitive ability. The geroprotective effects on primate neurons were partially mediated by the activation of Nrf2, a transcription factor with anti-oxidative capabilities. Our research pioneers the systemic reduction of multi-dimensional biological age in primates through metformin, paving the way for advancing pharmaceutical strategies against human aging.

5.
Cell ; 186(10): 2078-2091.e18, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37172562

ABSTRACT

Neural tube (NT) defects arise from abnormal neurulation and result in the most common birth defects worldwide. Yet, mechanisms of primate neurulation remain largely unknown due to prohibitions on human embryo research and limitations of available model systems. Here, we establish a three-dimensional (3D) prolonged in vitro culture (pIVC) system supporting cynomolgus monkey embryo development from 7 to 25 days post-fertilization. Through single-cell multi-omics analyses, we demonstrate that pIVC embryos form three germ layers, including primordial germ cells, and establish proper DNA methylation and chromatin accessibility through advanced gastrulation stages. In addition, pIVC embryo immunofluorescence confirms neural crest formation, NT closure, and neural progenitor regionalization. Finally, we demonstrate that the transcriptional profiles and morphogenetics of pIVC embryos resemble key features of similarly staged in vivo cynomolgus and human embryos. This work therefore describes a system to study non-human primate embryogenesis through advanced gastrulation and early neurulation.


Subject(s)
Neural Tube Defects , Neurulation , Tissue Culture Techniques , Animals , Humans , Blastocyst , Embryo, Mammalian , Embryonic Development , Macaca fascicularis , Neural Tube Defects/genetics , Neural Tube Defects/pathology , Tissue Culture Techniques/methods
6.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37979582

ABSTRACT

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Subject(s)
Arabidopsis , Indoleacetic Acids , Plant Growth Regulators , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
7.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37379838

ABSTRACT

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


Subject(s)
DNA Helicases , RNA Helicases , DNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA Helicases/metabolism , Stress Granules , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , GTP-Binding Proteins/metabolism , RNA, Messenger/metabolism , Cytoplasmic Granules/metabolism
8.
Cell ; 186(2): 287-304.e26, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36610399

ABSTRACT

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Subject(s)
Aging , Endogenous Retroviruses , Aged , Animals , Humans , Mice , Aging/genetics , Aging/pathology , Cellular Senescence , Endogenous Retroviruses/genetics , Primates
9.
Cell ; 185(1): 204-217.e14, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34965378

ABSTRACT

Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.


Subject(s)
Epigenome , Evolution, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Pinus/genetics , Acclimatization/genetics , Chromosomes, Plant/genetics , Cycadopsida/genetics , DNA Transposable Elements/genetics , Forests , Gene Regulatory Networks , Genome Size , Genomics/methods , Introns , Magnoliopsida/genetics
10.
Cell ; 184(21): 5357-5374.e22, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34582788

ABSTRACT

Despite remarkable clinical efficacy of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits for triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that deletion of the E3 ubiquitin ligase Cop1 in cancer cells decreases secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, enhances anti-tumor immunity, and strengthens ICB response. Transcriptomics, epigenomics, and proteomics analyses revealed that Cop1 functions through proteasomal degradation of the C/ebpδ protein. The Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. In addition, deletion of the E3 ubiquitin ligase Cop1 in cancer cells stabilizes C/ebpδ to suppress expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy in TNBC by regulating chemokine secretion and macrophage infiltration in the tumor microenvironment.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Immunotherapy , Macrophages/enzymology , Neoplasms/immunology , Neoplasms/therapy , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , CCAAT-Enhancer-Binding Protein-delta/metabolism , CRISPR-Associated Protein 9/metabolism , Cell Line, Tumor , Chemokines/metabolism , Chemotaxis , Disease Models, Animal , Gene Library , Humans , Immune Evasion , Mice, Inbred BALB C , Mice, Inbred C57BL , Proteolysis , Substrate Specificity , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy
11.
Nat Immunol ; 24(10): 1735-1747, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37679549

ABSTRACT

Neurodegenerative diseases, including Alzheimer's disease (AD), are characterized by innate immune-mediated inflammation, but functional and mechanistic effects of the adaptive immune system remain unclear. Here we identify brain-resident CD8+ T cells that coexpress CXCR6 and PD-1 and are in proximity to plaque-associated microglia in human and mouse AD brains. We also establish that CD8+ T cells restrict AD pathologies, including ß-amyloid deposition and cognitive decline. Ligand-receptor interaction analysis identifies CXCL16-CXCR6 intercellular communication between microglia and CD8+ T cells. Further, Cxcr6 deficiency impairs accumulation, tissue residency programming and clonal expansion of brain PD-1+CD8+ T cells. Ablation of Cxcr6 or CD8+ T cells ultimately increases proinflammatory cytokine production from microglia, with CXCR6 orchestrating brain CD8+ T cell-microglia colocalization. Collectively, our study reveals protective roles for brain CD8+ T cells and CXCR6 in mouse AD pathogenesis and highlights that microenvironment-specific, intercellular communication orchestrates tissue homeostasis and protection from neuroinflammation.

12.
Cell ; 183(4): 1117-1133.e19, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33096019

ABSTRACT

Re-activation and clonal expansion of tumor-specific antigen (TSA)-reactive T cells are critical to the success of checkpoint blockade and adoptive transfer of tumor-infiltrating lymphocyte (TIL)-based therapies. There are no reliable markers to specifically identify the repertoire of TSA-reactive T cells due to their heterogeneous composition. We introduce FucoID as a general platform to detect endogenous antigen-specific T cells for studying their biology. Through this interaction-dependent labeling approach, intratumoral TSA-reactive CD4+, CD8+ T cells, and TSA-suppressive CD4+ T cells can be detected and separated from bystander T cells based on their cell-surface enzymatic fucosyl-biotinylation. Compared to bystander TILs, TSA-reactive TILs possess a distinct T cell receptor (TCR) repertoire and unique gene features. Although exhibiting a dysfunctional phenotype, TSA-reactive CD8+ TILs possess substantial capabilities of proliferation and tumor-specific killing. Featuring genetic manipulation-free procedures and a quick turnover cycle, FucoID should have the potential of accelerating the pace of personalized cancer treatment.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Communication , Fucose/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Adult , Amino Acid Sequence , Animals , Biomarkers, Tumor/metabolism , Biotinylation , Bystander Effect/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Membrane/metabolism , Dendritic Cells/metabolism , Disease Models, Animal , Female , Fucosyltransferases/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Helicobacter pylori/enzymology , Humans , Immunity , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Peptides/chemistry , Phenotype , Programmed Cell Death 1 Receptor/metabolism , Spleen/metabolism
13.
Cell ; 180(5): 984-1001.e22, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109414

ABSTRACT

Aging causes a functional decline in tissues throughout the body that may be delayed by caloric restriction (CR). However, the cellular profiles and signatures of aging, as well as those ameliorated by CR, remain unclear. Here, we built comprehensive single-cell and single-nucleus transcriptomic atlases across various rat tissues undergoing aging and CR. CR attenuated aging-related changes in cell type composition, gene expression, and core transcriptional regulatory networks. Immune cells were increased during aging, and CR favorably reversed the aging-disturbed immune ecosystem. Computational prediction revealed that the abnormal cell-cell communication patterns observed during aging, including the excessive proinflammatory ligand-receptor interplay, were reversed by CR. Our work provides multi-tissue single-cell transcriptional landscapes associated with aging and CR in a mammal, enhances our understanding of the robustness of CR as a geroprotective intervention, and uncovers how metabolic intervention can act upon the immune system to modify the process of aging.


Subject(s)
Aging/genetics , Caloric Restriction , Immune System/metabolism , Transcriptome/genetics , Aging/metabolism , Aging/pathology , Animals , Cellular Reprogramming/genetics , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Humans , Rats , Single-Cell Analysis
14.
Cell ; 183(2): 429-441.e16, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32941803

ABSTRACT

Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.


Subject(s)
Coronavirus Infections/drug therapy , Immunoglobulin Heavy Chains/administration & dosage , Immunoglobulin Variable Region/administration & dosage , Peptide Library , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Antibody Affinity , COVID-19 , Cricetinae , Female , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/ultrastructure , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/ultrastructure , Mice , Mice, Inbred BALB C , Mutation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , COVID-19 Drug Treatment
15.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32359424

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Bayes Theorem , COVID-19 , China/epidemiology , Coronavirus Infections/virology , Epidemiological Monitoring , Humans , Likelihood Functions , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Travel
16.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32814014

ABSTRACT

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Subject(s)
Genetic Variation/genetics , Tick-Borne Diseases/microbiology , Ticks/genetics , Animals , Cell Line , Disease Vectors , Host Specificity/genetics
17.
Nat Immunol ; 23(11): 1577-1587, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36271146

ABSTRACT

Aberrant RNA splicing in keratinocytes drives inflammatory skin disorders. In the present study, we found that the RNA helicase DDX5 was downregulated in keratinocytes from the inflammatory skin lesions in patients with atopic dermatitis and psoriasis, and that mice with keratinocyte-specific deletion of Ddx5 (Ddx5∆KC) were more susceptible to cutaneous inflammation. Inhibition of DDX5 expression in keratinocytes was induced by the cytokine interleukin (IL)-17D through activation of the CD93-p38 MAPK-AKT-SMAD2/3 signaling pathway and led to pre-messenger RNA splicing events that favored the production of membrane-bound, intact IL-36 receptor (IL-36R) at the expense of soluble IL-36R (sIL-36R) and to the selective amplification of IL-36R-mediated inflammatory responses and cutaneous inflammation. Restoration of sIL-36R in Ddx5∆KC mice with experimental atopic dermatitis or psoriasis suppressed skin inflammation and alleviated the disease phenotypes. These findings indicate that IL-17D modulation of DDX5 expression controls inflammation in keratinocytes during inflammatory skin diseases.


Subject(s)
Dermatitis, Atopic , Interleukin-27 , Psoriasis , Mice , Animals , Interleukin-27/metabolism , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Keratinocytes/metabolism , Skin/pathology , Psoriasis/genetics , Psoriasis/pathology , Inflammation/metabolism
19.
Cell ; 177(6): 1448-1462.e14, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150621

ABSTRACT

Mammals rely on a network of circadian clocks to control daily systemic metabolism and physiology. The central pacemaker in the suprachiasmatic nucleus (SCN) is considered hierarchically dominant over peripheral clocks, whose degree of independence, or tissue-level autonomy, has never been ascertained in vivo. Using arrhythmic Bmal1-null mice, we generated animals with reconstituted circadian expression of BMAL1 exclusively in the liver (Liver-RE). High-throughput transcriptomics and metabolomics show that the liver has independent circadian functions specific for metabolic processes such as the NAD+ salvage pathway and glycogen turnover. However, although BMAL1 occupies chromatin at most genomic targets in Liver-RE mice, circadian expression is restricted to ∼10% of normally rhythmic transcripts. Finally, rhythmic clock gene expression is lost in Liver-RE mice under constant darkness. Hence, full circadian function in the liver depends on signals emanating from other clocks, and light contributes to tissue-autonomous clock function.


Subject(s)
ARNTL Transcription Factors/physiology , Circadian Clocks/genetics , Liver/metabolism , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/metabolism , Circadian Clocks/physiology , Circadian Rhythm/genetics , Female , Gene Expression Regulation , Homeostasis , Light , Male , Mice , Mice, Knockout , Models, Animal , Organ Specificity/physiology , Photoperiod , Suprachiasmatic Nucleus/metabolism
20.
Cell ; 176(6): 1447-1460.e14, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30799039

ABSTRACT

The presence of DNA in the cytoplasm is normally a sign of microbial infections and is quickly detected by cyclic GMP-AMP synthase (cGAS) to elicit anti-infection immune responses. However, chronic activation of cGAS by self-DNA leads to severe autoimmune diseases for which no effective treatment is available yet. Here we report that acetylation inhibits cGAS activation and that the enforced acetylation of cGAS by aspirin robustly suppresses self-DNA-induced autoimmunity. We find that cGAS acetylation on either Lys384, Lys394, or Lys414 contributes to keeping cGAS inactive. cGAS is deacetylated in response to DNA challenges. Importantly, we show that aspirin can directly acetylate cGAS and efficiently inhibit cGAS-mediated immune responses. Finally, we demonstrate that aspirin can effectively suppress self-DNA-induced autoimmunity in Aicardi-Goutières syndrome (AGS) patient cells and in an AGS mouse model. Thus, our study reveals that acetylation contributes to cGAS activity regulation and provides a potential therapy for treating DNA-mediated autoimmune diseases.


Subject(s)
DNA/immunology , Nucleotidyltransferases/metabolism , Self Tolerance/immunology , Acetylation , Amino Acid Sequence , Animals , Aspirin/pharmacology , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/metabolism , Autoimmunity , Cell Line , DNA/genetics , DNA/metabolism , Disease Models, Animal , Exodeoxyribonucleases/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/immunology , Nervous System Malformations/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL