Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Chem Rev ; 124(1): 164-209, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38044580

ABSTRACT

The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.

2.
J Am Chem Soc ; 146(12): 8737-8745, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483446

ABSTRACT

The nature of the active sites and their structure sensitivity are the keys to rational design of efficient catalysts but have been debated for almost one century in heterogeneous catalysis. Though the Brønsted-Evans-Polanyi (BEP) relationship along with linear scaling relation has long been used to study the reactivity, explicit geometry, and composition properties are absent in this relationship, a fact that prevents its exploration in structure sensitivity of supported catalysts. In this work, based on interpretable multitask symbolic regression and a comprehensive first-principles data set, we discovered a structure descriptor, the topological under-coordinated number mediated by number of valence electrons and the lattice constant, to successfully address the structure sensitivity of metal catalysts. The database used for training, testing, and transferability investigation includes bond-breaking barriers of 20 distinct chemical bonds over 10 transition metals, two metal crystallographic phases, and 17 different facets. The resulting 2D descriptor composing the structure term and the reaction energy term shows great accuracy to predict the reaction barriers and generalizability over the data set with diverse chemical bonds in symmetry, bond order, and steric hindrance. The theory is physical and concise, providing a constructive strategy not only to understand the structure sensitivity but also to decipher the entangled geometric and electronic effects of metal catalysts. The insights revealed are valuable for the rational design of the site-specific metal catalysts.

3.
Angew Chem Int Ed Engl ; : e202405255, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682659

ABSTRACT

Precise regulation of the active site structure is an important means to enhance the activity and selectivity of catalysts in CO2 electroreduction. Here, we creatively introduce anionic groups, which can not only stabilize metal sites with strong coordination ability but also have rich interactions with protons at active sites to modify the electronic structure and proton transfer process of catalysts. This strategy helps to convert CO2 into fuel chemicals at low overpotentials. As a typical example, a composite catalyst, CuO/Cu-NSO4/CN, with highly dispersed Cu(II)-SO4 sites has been reported, in which CO2 electroreduction to formate occurs at a low overpotential with a high Faradaic efficiency (-0.5 V vs. RHE, FEformate=87.4 %). Pure HCOOH is produced with an energy conversion efficiency of 44.3 % at a cell voltage of 2.8 V. Theoretical modeling demonstrates that sulfate promotes CO2 transformation into a carboxyl intermediate followed by HCOOH generation, whose mechanism is significantly different from that of the traditional process via a formate intermediate for HCOOH production.

4.
J Am Chem Soc ; 145(41): 22697-22707, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37801691

ABSTRACT

Studying catalytic hydrogenation reactions on oxide surfaces at the atomic scale has been challenging because of the typical occurrence of these processes at ambient or elevated pressures, rendering them less accessible to atomic-scale techniques. Here, we report an atomic-scale study on H2 dissociation and the hydrogenation of CO and CO2 on ZnO using ambient pressure scanning tunneling microscopy, ambient pressure X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations. We directly visualized the heterolytic dissociation of H2 on ZnO(101̅0) under ambient pressure and found that dissociation reaction does not require the assistance of surface defects. The presence of CO or CO2 on ZnO at 300 K does not impede the availability of surface sites for H2 dissociation; instead, CO can even enhance the stability of coadsorbed hydride species, thereby facilitating their dissociative adsorption. Our results show that hydride is the active species for hydrogenation, while hydroxyl cannot hydrogenate CO/CO2 on ZnO. Both AP studies and DFT calculations showed that the hydrogenation of CO2 on ZnO is thermodynamically and kinetically more favorable compared to that of CO hydrogenation. Our results point toward a two-step mechanism for CO hydrogenation, involving initial oxidation to CO2 at step sites on ZnO followed by reaction with hydride to form formate. These findings provide molecular insights into the hydrogenation of CO/CO2 on ZnO and deepen our understanding of syngas conversion and oxide catalysis in general.

5.
Angew Chem Int Ed Engl ; 62(23): e202300110, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37026370

ABSTRACT

Increasing selectivity without the expense of activity is desired but challenging in heterogeneous catalysis. By revealing the molecule saturation and adsorption sensitivity on overlayer thickness, strain, and coordination of Pd-based catalysts from first-principles calculations, we designed a stable Pd monolayer (ML) catalyst on a Ru terrace to boost both activity and selectivity of acetylene semihydrogenation. The least saturated molecule is most sensitive to the change in catalyst electronic and geometric properties. By simultaneously compressing the Pd ML and exposing the high coordination sites, the adsorption of more saturated ethylene is considerably weakened to facilitate the desorption for high selectivity. The even stronger weakening to the least saturated acetylene drives its hydrogenation such that it is more exothermic, thereby boosting the activity. Tailoring the molecule saturation and its sensitivity to structure and composition provides a tool for rational design of efficient catalysts.

6.
Angew Chem Int Ed Engl ; 61(23): e202202330, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35322514

ABSTRACT

The active site of the industrial Cu/ZnO/Al2 O3 catalyst used in CO2 hydrogenation to methanol has been debated for decades. Grand challenges remain in the characterization of structure, composition, and chemical state, both microscopically and spectroscopically, and complete theoretical calculations are limited when it comes to describing the intrinsic activity of the catalyst over the diverse range of structures that emerge under realistic conditions. Here a series of inverse model catalysts of ZnO on copper hydroxide were prepared where the size of ZnO was precisely tuned from atomically dispersed species to nanoparticles using atomic layer deposition. ZnO decoration boosted methanol formation to a rate of 877 gMeOH kgcat -1 h-1 with ≈80 % selectivity at 493 K. High pressure in situ X-ray absorption spectroscopy demonstrated that the atomically dispersed ZnO species are prone to aggregate at oxygen-deficient ZnO ensembles instead of forming CuZn metal alloys. By modeling various potential active structures, density functional theory calculations and microkinetic simulations revealed that ZnO/Cu interfaces with oxygen vacancies, rather than stoichiometric interfaces, Cu and CuZn alloys were essential to catalytic activation.

7.
J Am Chem Soc ; 143(45): 18854-18858, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34730347

ABSTRACT

Controlling the chemical environments of the active metal atom including both coordination number (CN) and local composition (LC) is vital to achieve active and stable single-atom catalysts (SACs), but remains challenging. Here we synthesized a series of supported Pt1 SACs by depositing Pt atoms onto the pretuned anchoring sites on nitrogen-doped carbon using atomic layer deposition. In hydrogenation of para-chloronitrobenzene, the Pt1 SAC with a higher CN about four but less pyridinic nitrogen (Npyri) content exhibits a remarkably high activity along with superior recyclability compared to those with lower CNs and more Npyri. Theoretical calculations reveal that the four-coordinated Pt1 atoms with about 1 eV lower formation energy are more resistant to agglomerations than the three-coordinated ones. Composition-wise decrease of the Pt-Npyri bond upshifts gradually the Pt-5d center, and minimal one Pt-Npyri bond features a high-lying Pt-5d state that largely facilitates H2 dissociation, boosting hydrogenation activity remarkably.

8.
Angew Chem Int Ed Engl ; 60(26): 14446-14457, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33844879

ABSTRACT

Layered double hydroxides (LDHs) are among the most active and studied catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. However, previous studies have generally either focused on a small number of LDHs, applied synthetic routes with limited structural control, or used non-intrinsic activity metrics, thus hampering the construction of consistent structure-activity-relations. Herein, by employing new individually developed synthesis strategies with atomic structural control, we obtained a broad series of crystalline α-MA (II)MB (III) LDH and ß-MA (OH)2 electrocatalysts (MA =Ni, Co, and MB =Co, Fe, Mn). We further derived their intrinsic activity through electrochemical active surface area normalization, yielding the trend NiFe LDH > CoFe LDH > Fe-free Co-containing catalysts > Fe-Co-free Ni-based catalysts. Our theoretical reactivity analysis revealed that these intrinsic activity trends originate from the dual-metal-site nature of the reaction centers, which lead to composition-dependent synergies and diverse scaling relationships that may be used to design catalysts with improved performance.

9.
Chemphyschem ; 21(21): 2417-2425, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33063907

ABSTRACT

Supported single transition metal (TM1 ) catalysts have attracted broad attention in academia recently. Still, their corresponding reactivity and stability under reaction conditions are critical but have not well explored at the fundamental level. Herein, we use density functional theory calculation and ab initio molecular dynamics simulation to investigate the role of reactants and ligands on the reactivity and stability of graphitic carbon nitride (g-C3 N4 ) supported Ni1 for CO oxidation. We find out that supported bare Ni1 atoms are only metastable on the surface and tend to diffuse into the interlayer of g-C3 N4 . Though Ni1 is catalytically active at moderate temperatures, CO adsorption induced dimerization deactivates the catalyst. Hydroxyl groups not only are able to stabilize the supported Ni1 atom, but also increase the reactivity by participating directly in the reaction. Our results provide valuable insights on improving the chemical stability of TM1 by ligands without sacrificing the reactivity, which are helpful for the rational design of highly loaded atomically dispersed supported metal catalysts.

10.
J Chem Phys ; 152(7): 074714, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32087658

ABSTRACT

The catalytic properties of metal oxides are often enabled by surface defects, and their characterization is thus vital to the understanding and application of metal oxide catalysts. Typically, surface defects for metal oxides show fingerprints in spectroscopic characterization. However, we found that synchrotron-radiation photoelectron spectroscopy (SRPES) is difficult to probe surface defects of ZnO. Meanwhile, CO as a probe molecule cannot be used properly to identify surface defect sites on ZnO in infrared (IR) spectroscopy. Instead, we found that formaldehyde could serve as a probe molecule, which is sensitive to surface defect sites and could titrate surface oxygen vacancies on ZnO, as evidenced in both SRPES and IR characterization. Density functional theory calculations revealed that formaldehyde dissociates to form formate species on the stoichiometric ZnO(101¯0) surface, while it dissociates to formyl species on Vo sites of the reduced ZnO(101¯0) surface instead. Furthermore, the mechanism of formaldehyde dehydrogenation on ZnO surfaces was also elucidated, while the generated hydrogen atoms are found to be stored in ZnO bulk from 423 K to 773 K, making ZnO an interesting (de)hydrogenation catalyst.

11.
Angew Chem Int Ed Engl ; 59(34): 14434-14442, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32259391

ABSTRACT

It is of pivotal importance to develop efficient catalysts and investigate the intrinsic mechanism for CO2 methanation. Now, it is reported that PdFe intermetallic nanocrystals afforded high activity and stability for CO2 methanation. The mass activity of fct-PdFe nanocrystals reached 5.3 mmol g-1 h-1 , under 1 bar (CO2 :H2 =1:4) at 180 °C, being 6.6, 1.6, 3.3, and 5.3 times as high as that of fcc-PdFe nanocrystals, Ru/C, Ni/C, and Pd/C, respectively. After 20 rounds of successive reaction, 98 % of the original activity was retained for PdFe intermetallic nanocrystals. Further mechanistic studies revealed that PdFe intermetallic nanocrystals enabled the maintenance of metallic Fe species via a reversible oxidation-reduction process in CO2 methanation. The metallic Fe in PdFe intermetallic nanocrystals induced the direct conversion of CO2 into CO* as the intermediate, contributing to the enhanced activity.

12.
J Am Chem Soc ; 141(51): 19964-19968, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31804817

ABSTRACT

The efficient electrochemical hydrogen evolution reaction (HER) plays a key role in accelerating sustainable H2 production from water electrolysis, but its large-scale applications are hindered by the high cost of the state-of-the-art Pt catalyst. In this work, submonolayer Pt was controllably deposited on an intermetallic Pd3Pb nanoplate (AL-Pt/Pd3Pb). The atomic efficiency and electronic structure of the active surface Pt layer were largely optimized, greatly enhancing the acidic HER. AL-Pt/Pd3Pb exhibits an outstanding HER activity with an overpotential of only 13.8 mV at 10 mA/cm2 and a high mass activity of 7834 A/gPd+Pt at -0.05 V, both largely surpassing those of commercial Pt/C (30 mV, 1486 A/gPt). In addition, AL-Pt/Pd3Pb shows excellent stability and robustness. Theoretical calculations show that the improved activity is mainly derived from the charge transfer from Pd3Pb to Pt, resulting in a strong electrostatic interaction that can stabilize the transition state and lower the barrier.

13.
Phys Chem Chem Phys ; 21(2): 523-536, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30556573

ABSTRACT

Surface and interface designs are an efficient strategy to fabricate innovative and advanced catalysts. A prerequisite for this is a fundamental understanding of the structure-performance relations of catalyst nanoparticles, which, however, remains a formidable challenge due to the complexity of heterogeneous catalysis. Recent progresses in catalytic nanocrystals with uniform and well-defined structures, in situ characterization techniques, and theoretical calculations have offered opportunities for the fundamental studies of heterogeneous catalysis, and the achieved outputs are turning the innovation of efficient catalysts via surface and interface designs into a reality. Herein, the recent advances in the fundamental-understanding-directed rational surface and interface designs for heterogeneous catalysis, including crystal phase design, morphology/facet design, and size design, are presented. Perspectives are also discussed for the innovation of efficient catalysts via the fundamental-understanding-directed surface and interface designs followed by controlled synthesis.

14.
J Chem Phys ; 151(23): 234711, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31864240

ABSTRACT

Dissolution is the primary route of Pt nanoparticle degradation in electrochemical devices, e.g., fuel cells. Investigation of potential-dependent dissolution kinetics of Pt nanoparticles is crucial to optimize the nanoparticle size and operating conditions for better performance. A mean-field kinetic theory under the steady-state approximation, combined with atomistic thermodynamics and Wulff construction, was developed to study the interplay between oxygen chemisorption, electrode potential, and particle size on the dissolution of Pt nanoparticles. We found that although oxygen chemisorption from electrode potential-induced water splitting can stabilize Pt nanoparticles through decreasing the surface energy and increasing the redox potential, the electrode potential plays a more decisive role in facilitating the dissolution of Pt nanoparticles. In comparison with the minor effect of oxygen chemisorption, an increase in the particle size, though reducing the dispersion, has a more significant effect on the suppression of the dissolution. These theoretical understandings on the effects of electrode potential and particle size on the dissolution are crucial for optimizing the nanoparticle size under oxidative operating conditions.

15.
J Am Chem Soc ; 139(6): 2267-2276, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28099028

ABSTRACT

Ruthenium is a promising low-temperature catalyst for Fischer-Tropsch synthesis (FTS). However, its scarcity and modest specific activity limit its widespread industrialization. We demonstrate here a strategy for tuning the crystal phase of catalysts to expose denser and active sites for a higher mass-specific activity. Density functional theory calculations show that upon CO dissociation there are a number of open facets with modest barrier available on the face-centered cubic (fcc) Ru but only a few step edges with a lower barrier on conventional hexagonal-closest packed (hcp) Ru. Guided by theoretical calculations, water-dispersible fcc Ru catalysts containing abundant open facets were synthesized and showed an unprecedented mass-specific activity in the aqueous-phase FTS, 37.8 molCO·molRu-1·h-1 at 433 K. The mass-specific activity of the fcc Ru catalysts with an average size of 6.8 nm is about three times larger than the previous best hcp catalyst with a smaller size of 1.9 nm and a higher specific surface area. The origin of the higher mass-specific activity of the fcc Ru catalysts is identified experimentally from the 2 orders of magnitude higher density of the active sites, despite its slightly higher apparent barrier. Experimental results are in excellent agreement with prediction of theory. The great influence of the crystal phases on site distribution and their intrinsic activities revealed here provides a rationale design of catalysts for higher mass-specific activity without decrease of the particle size.

16.
Faraday Discuss ; 197: 207-224, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28184397

ABSTRACT

Various carbonaceous species were controllably deposited on Co/Al2O3 catalysts using ethylene as carbon source during the activation process for Fischer-Tropsch synthesis (FTS). Atomic, polymeric and graphitic carbon were distinguished by Raman spectroscopy, thermoanalysis and temperature programmed hydrogenation. Significant changes occurred in both the catalytic activity and selectivity toward hydrocarbon products after ethylene treatment. The activity decreased along with an increase in CH4 selectivity, at the expense of a remarkable decrease of heavy hydrocarbon production, resulting in enhanced selectivity for the gasoline fraction. In situ XPS experiments show the possible electron transfer from cobalt to carbon and the blockage of metallic cobalt sites, which is responsible for the deactivation of the catalyst. DFT calculations reveal that the activation barrier (Ea) of methane formation decreases by 0.61 eV on the carbon-absorbed Co(111) surface, whereas the Ea of the CH + CH coupling reaction changes unnoticeably. Hydrogenation of CHx to methane becomes the preferable route among the elementary reactions on the Co(111) surface, leading to dramatic changes in the product distribution. Detailed coke-induced deactivation mechanisms of Co-based catalysts during FTS are discussed.

17.
Angew Chem Int Ed Engl ; 56(27): 7769-7773, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28467678

ABSTRACT

Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides.

18.
Angew Chem Int Ed Engl ; 53(19): 4856-61, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24692419

ABSTRACT

The selective oxidation of propylene with O2 to propylene oxide and acrolein is of great interest and importance. We report the crystal-plane-controlled selectivity of uniform capping-ligand-free Cu2 O octahedra, cubes, and rhombic dodecahedra in catalyzing propylene oxidation with O2 : Cu2 O octahedra exposing {111} crystal planes are most selective for acrolein; Cu2 O cubes exposing {100} crystal planes are most selective for CO2 ; Cu2 O rhombic dodecahedra exposing {110} crystal planes are most selective for propylene oxide. One-coordinated Cu on Cu2 O(111), three-coordinated O on Cu2 O(110), and two-coordinated O on Cu2 O(100) were identified as the catalytically active sites for the production of acrolein, propylene oxide, and CO2 , respectively. These results reveal that crystal-plane engineering of oxide catalysts could be a useful strategy for developing selective catalysts and for gaining fundamental understanding of complex heterogeneous catalytic reactions at the molecular level.

19.
J Am Chem Soc ; 135(5): 1760-71, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23272702

ABSTRACT

Understanding Ostwald ripening and disintegration of supported metal particles under operating conditions has been of central importance in the study of sintering and dispersion of heterogeneous catalysts for long-term industrial implementation. To achieve a quantitative description of these complicated processes, an atomistic and generic theory taking into account the reaction environment, particle size and morphology, and metal-support interaction is developed. It includes (1) energetics of supported metal particles, (2) formation of monomers (both the metal adatoms and metal-reactant complexes) on supports, and (3) corresponding sintering rate equations and total activation energies, in the presence of reactants at arbitrary temperature and pressure. The thermodynamic criteria for the reactant assisted Ostwald ripening and induced disintegration are formulated, and the influence of reactants on sintering kinetics and redispersion are mapped out. Most energetics and kinetics barriers in the theory can be obtained conveniently by first-principles theory calculations. This allows for the rapid exploration of sintering and disintegration of supported metal particles in huge phase space of structures and compositions under various reaction environments. General strategies of suppressing the sintering of the supported metal particles and facilitating the redispersions of the low surface area catalysts are proposed. The theory is applied to TiO(2)(110) supported Rh particles in the presence of carbon monoxide, and reproduces well the broad temperature, pressure, and particle size range over which the sintering and redispersion occurred in such experiments. The result also highlights the importance of the metal-carbonyl complexes as monomers for Ostwald ripening and disintegration of supported metal catalysts in the presence of CO.

20.
J Am Chem Soc ; 135(44): 16284-7, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24147726

ABSTRACT

Identifying the structure sensitivity of catalysts in reactions, such as Fischer-Tropsch synthesis from CO and H2 over cobalt catalysts, is an important yet challenging issue in heterogeneous catalysis. Based on a first-principles kinetic study, we find for the first time that CO activation on hexagonal close-packed (HCP) Co not only has much higher intrinsic activity than that of face centered-cubic (FCC) Co but also prefers a different reaction route, i.e., direct dissociation with HCP Co but H-assisted dissociation on the FCC Co. The origin is identified from the formation of various denser yet favorable active sites on HCP Co not available for FCC Co, due to their distinct crystallographic structure and morphology. The great dependence of the activity on the crystallographic structure and morphology of the catalysts revealed here may open a new avenue for better, stable catalysts with maximum mass-specific reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL