Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.070
Filter
Add more filters

Publication year range
1.
Mol Cell ; 83(20): 3578-3581, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37863024

ABSTRACT

Molecular Cell talks to co-first authors Meiling Wang and Wenjing Li with co-corresponding author Weixing Zhao about their paper, "Crucial roles of the BRCA1-BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair" (in this issue of Molecular Cell) and what motivates their scientific pursuits.


Subject(s)
Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Mol Cell ; 83(20): 3679-3691.e8, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37797621

ABSTRACT

The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.


Subject(s)
Neoplasms , Tumor Suppressor Proteins , Humans , Tumor Suppressor Proteins/metabolism , BRCA1 Protein/metabolism , Ubiquitination , Histones/genetics , Histones/metabolism , Ubiquitin-Protein Ligases/metabolism , Recombinational DNA Repair , DNA , DNA Repair
3.
Nature ; 623(7987): 608-615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938768

ABSTRACT

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Subject(s)
CD4-Positive T-Lymphocytes , Herpesvirus 6, Human , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Virus Activation , Virus Latency , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Clinical Trials as Topic , Gene Expression Regulation, Viral , Genomics , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Herpesvirus 6, Human/physiology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Infectious Encephalitis/complications , Infectious Encephalitis/virology , Receptors, Chimeric Antigen/immunology , Roseolovirus Infections/complications , Roseolovirus Infections/virology , Single-Cell Gene Expression Analysis , Viral Load
4.
EMBO J ; 42(15): e113565, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37305927

ABSTRACT

BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.


Subject(s)
Nucleosomes , Tumor Suppressor Proteins , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Ubiquitination , Histones/genetics , Histones/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Chromatin
5.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38446740

ABSTRACT

Protein annotation has long been a challenging task in computational biology. Gene Ontology (GO) has become one of the most popular frameworks to describe protein functions and their relationships. Prediction of a protein annotation with proper GO terms demands high-quality GO term representation learning, which aims to learn a low-dimensional dense vector representation with accompanying semantic meaning for each functional label, also known as embedding. However, existing GO term embedding methods, which mainly take into account ancestral co-occurrence information, have yet to capture the full topological information in the GO-directed acyclic graph (DAG). In this study, we propose a novel GO term representation learning method, PO2Vec, to utilize the partial order relationships to improve the GO term representations. Extensive evaluations show that PO2Vec achieves better outcomes than existing embedding methods in a variety of downstream biological tasks. Based on PO2Vec, we further developed a new protein function prediction method PO2GO, which demonstrates superior performance measured in multiple metrics and annotation specificity as well as few-shot prediction capability in the benchmarks. These results suggest that the high-quality representation of GO structure is critical for diverse biological tasks including computational protein annotation.


Subject(s)
Benchmarking , Computational Biology , Gene Ontology , Learning , Molecular Sequence Annotation
7.
Proc Natl Acad Sci U S A ; 120(23): e2219419120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252972

ABSTRACT

Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Mice , Animals , Glucose/metabolism , Proline/metabolism , Hydroxylation , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gluconeogenesis/physiology , Prolyl Hydroxylases/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL
8.
FASEB J ; 38(6): e23541, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38498341

ABSTRACT

Several observational studies have suggested that proton-pump inhibitor (PPI) use might increase diabetes risk, but the mechanism remains unclear. This study aimed to investigate the effects of PPI use on gut microbiota and bile acids (BAs) profiles, and to explore whether these changes could mediate the association of PPIs use with fasting blood glucose (FBG) levels and insulin resistance (IR) in Chinese population. A cross-sectional study was conducted in Shenzhen, China, from April to August 2021, enrolled 200 eligible patients from the local hospital. Participants completed a questionnaire and provided blood and stool samples. Gut microbiome was measured by16S rRNA gene sequencing, and bile acids were quantified by UPLC-MS/MS. Insulin resistance (IR) was assessed using the Homeostasis Model Assessment 2 (HOMA2-IR). PPI use was positively associated with higher levels of FBG and HOMA2-IR after controlling for possible confounders. PPI users exhibited a decreased Firmicutes and an increase in Bacteroidetes phylum, alongside higher levels of glycoursodeoxycholic acid (GUDCA) and taurochenodeoxycholic acid (TCDCA). Higher abundances of Bacteroidetes and Fusobacterium as well as higher levels of TCDCA in PPI users were positively associated with elevated FBG or HOMA2-IR. Mediation analyses indicated that the elevated levels of FBG and HOMA2-IR with PPI use were partially mediated by the alterations in gut microbiota and specific BAs (i.e., Fusobacterium genera and TCDCA). Long-term PPI use may increase FBG and HOMA2-IR levels, and alterations in gut microbiota and BAs profiles may partially explain this association.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Humans , Proton Pump Inhibitors/adverse effects , Bile Acids and Salts , Chromatography, Liquid , Cross-Sectional Studies , Tandem Mass Spectrometry , Bacteroidetes , Glucose/pharmacology
9.
J Cell Mol Med ; 28(7): e18238, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509729

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of total heart failure patients and is characterized by peripheral circulation, cardiac remodelling and comorbidities (such as advanced age, obesity, hypertension and diabetes) with limited treatment options. Chidamide (HBI-8000) is a domestically produced benzamide-based histone deacetylase isoform-selective inhibitor used for the treatment of relapsed refractory peripheral T-cell lymphomas. Based on our in vivo studies, we propose that HBI-8000 exerts its therapeutic effects by inhibiting myocardial fibrosis and myocardial hypertrophy in HFpEF patients. At the cellular level, we found that HBI-8000 inhibits AngII-induced proliferation and activation of CFs and downregulates the expression of fibrosis-related factors. In addition, we observed that the HFpEF group and AngII stimulation significantly increased the expression of TGF-ß1 as well as phosphorylated p38MAPK, JNK and ERK, whereas the expression of the above factors was significantly reduced after HBI-8000 treatment. Activation of the TGF-ß1/MAPK pathway promotes the development of fibrotic remodelling, and pretreatment with SB203580 (p38MAPK inhibitor) reverses this pathological change. In conclusion, our data suggest that HBI-8000 inhibits fibrosis by modulating the TGF-ß1/MAPK pathway thereby improving HFpEF. Therefore, HBI-8000 may become a new hope for the treatment of HFpEF patients.


Subject(s)
Heart Failure , Pyridines , Humans , Heart Failure/metabolism , Transforming Growth Factor beta1/metabolism , Stroke Volume , Neoplasm Recurrence, Local , Benzamides/pharmacology , Fibrosis
10.
Anal Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949233

ABSTRACT

Plastic pollution represents a critical threat to soil ecosystems and even humans, as plastics can serve as a habitat for breeding and refuging pathogenic microorganisms against stresses. However, evaluating the health risk of plastispheres is difficult due to the lack of risk factors and quantification model. Here, DNA sequencing, single-cell Raman-D2O labeling, and transformation assay were used to quantify key risk factors of plastisphere, including pathogen abundance, phenotypic resistance to various stresses (antibiotic and pesticide), and ability to acquire antibiotic resistance genes. A Bayesian network model was newly introduced to integrate these three factors and infer their causal relationships. Using this model, the risk of pathogen in the plastisphere is found to be nearly 3 magnitudes higher than that in free-living state. Furthermore, this model exhibits robustness for risk prediction, even in the absence of one factor. Our framework offers a novel and practical approach to assessing the health risk of plastispheres, contributing to the management of plastic-related threats to human health.

11.
BMC Med ; 22(1): 206, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769523

ABSTRACT

BACKGROUND: Numerous studies have been conducted to investigate the relationship between ABO and Rhesus (Rh) blood groups and various health outcomes. However, a comprehensive evaluation of the robustness of these associations is still lacking. METHODS: We searched PubMed, Web of Science, Embase, Scopus, Cochrane, and several regional databases from their inception until Feb 16, 2024, with the aim of identifying systematic reviews with meta-analyses of observational studies exploring associations between ABO and Rh blood groups and diverse health outcomes. For each association, we calculated the summary effect sizes, corresponding 95% confidence intervals, 95% prediction interval, heterogeneity, small-study effect, and evaluation of excess significance bias. The evidence was evaluated on a grading scale that ranged from convincing (Class I) to weak (Class IV). We assessed the certainty of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation criteria (GRADE). We also evaluated the methodological quality of included studies using the A Measurement Tool to Assess Systematic Reviews (AMSTAR). AMSTAR contains 11 items, which were scored as high (8-11), moderate (4-7), and low (0-3) quality. We have gotten the registration for protocol on the PROSPERO database (CRD42023409547). RESULTS: The current umbrella review included 51 systematic reviews with meta-analysis articles with 270 associations. We re-calculated each association and found only one convincing evidence (Class I) for an association between blood group B and type 2 diabetes mellitus risk compared with the non-B blood group. It had a summary odds ratio of 1.28 (95% confidence interval: 1.17, 1.40), was supported by 6870 cases with small heterogeneity (I2 = 13%) and 95% prediction intervals excluding the null value, and without hints of small-study effects (P for Egger's test > 0.10, but the largest study effect was not more conservative than the summary effect size) or excess of significance (P < 0.10, but the value of observed less than expected). And the article was demonstrated with high methodological quality using AMSTAR (score = 9). According to AMSTAR, 18, 32, and 11 studies were categorized as high, moderate, and low quality, respectively. Nine statistically significant associations reached moderate quality based on GRADE. CONCLUSIONS: Our findings suggest a potential relationship between ABO and Rh blood groups and adverse health outcomes. Particularly the association between blood group B and type 2 diabetes mellitus risk.


Subject(s)
ABO Blood-Group System , Meta-Analysis as Topic , Observational Studies as Topic , Rh-Hr Blood-Group System , Systematic Reviews as Topic , Humans , Systematic Reviews as Topic/methods , Observational Studies as Topic/methods
12.
Small ; 20(12): e2307104, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37939306

ABSTRACT

The treatment of chronic wounds still presents great challenges due to being infected by biofilms and the damaged healing process. The current treatments do not address the needs of chronic wounds. In this study, a highly effective dressing (Dox-DFO@MN Hy) for the treatment of chronic wounds is described. This dressing combines the advantages of microneedles (MNs) and hydrogels in the treatment of chronic wounds. MNs is employed to debride the biofilms and break down the wound barrier, providing rapid access to therapeutic drugs from hydrogel backing layer. Importantly, to kill the pathogenic bacteria in the biofilms specifically, Doxycycline hydrochloride (Dox) is wrapped into the polycaprolactone (PCL) microspheres that have lipase-responsive properties and loaded into the tips of MNs. At the same time, hydrogel backing layer is used to seal the wound and accelerate wound healing. Benefiting from the combination of two advantages of MNs and hydrogel, the dressing significantly reduces the bacteria in the biofilms and effectively promotes angiogenesis and cell migration in vitro. Overall, Dox-DFO@MN Hy can effectively treat chronic wounds infected with biofilms, providing a new idea for the treatment of chronic wounds.


Subject(s)
Bandages , Hydrogels , Bacteria , Biofilms , Cell Movement , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
13.
New Phytol ; 242(2): 641-657, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379453

ABSTRACT

Nitrate is the main source of nitrogen (N) available to plants and also is a signal that triggers complex regulation of transcriptional networks to modulate a wide variety of physiological and developmental responses in plants. How plants adapt to soil nitrate fluctuations is a complex process involving a fine-tuned response to nitrate provision and N starvation, the molecular mechanisms of which remain largely uncharted. Here, we report that the wheat transcription factor TaLBD41 interacts with the nitrate-inducible transcription factor TaNAC2 and is repressed by nitrate provision. Electrophoretic mobility shift assay and dual-luciferase system show that the TaLBD41-NAC2 interaction confers homeostatic coordination of nitrate uptake, reduction, and assimilation by competitively binding to TaNRT2.1, TaNR1.2, and TaNADH-GOGAT. Knockdown of TaLBD41 expression enhances N uptake and assimilation, increases spike number, grain yield, and nitrogen harvest index under different N supply conditions. We also identified an elite haplotype of TaLBD41-2B associated with increased spike number and grain yield. Our study uncovers a novel mechanism underlying the interaction between two transcription factors in mediating wheat adaptation to nitrate availability by antagonistically regulating nitrate uptake and assimilation, providing a potential target for designing varieties with efficient N use in wheat (Triticum aestivum).


Subject(s)
Nitrates , Nitrogen , Nitrates/metabolism , Nitrogen/metabolism , Biological Transport , Edible Grain/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Hepatology ; 78(5): 1492-1505, 2023 11 01.
Article in English | MEDLINE | ID: mdl-36680394

ABSTRACT

BACKGROUND AND AIMS: NASH has emerged as a leading cause of chronic liver disease. However, the mechanisms that govern NASH fibrosis remain largely unknown. CREBZF is a CREB/ATF bZIP transcription factor that causes hepatic steatosis and metabolic defects in obesity. APPROACH AND RESULTS: Here, we show that CREBZF is a key mechanism of liver fibrosis checkpoint that promotes hepatocyte injury and exacerbates diet-induced NASH in mice. CREBZF deficiency attenuated liver injury, fibrosis, and inflammation in diet-induced mouse models of NASH. CREBZF increases HSC activation and fibrosis in a hepatocyte-autonomous manner by stimulating an extracellular matrix protein osteopontin, a key regulator of fibrosis. The inhibition of miR-6964-3p mediates CREBZF-induced production and secretion of osteopontin in hepatocytes. Adeno-associated virus -mediated rescue of osteopontin restored HSC activation, liver fibrosis, and NASH progression in CREBZF-deficient mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced NASH mouse models and humans with NASH. CONCLUSIONS: Osteopontin signaling by CREBZF represents a previously unrecognized intrahepatic mechanism that triggers liver fibrosis and contributes to the severity of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Osteopontin , Animals , Humans , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Fatty Liver/genetics , Fatty Liver/metabolism , Fibrosis , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Osteopontin/genetics , Osteopontin/metabolism
15.
Opt Express ; 32(9): 15546-15554, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859202

ABSTRACT

Carbon-based inorganic CsPbIBr2 perovskite solar cells (C-IPSC) have attracted widespread attention due to their low cost and excellent thermal stability. Unfortunately, due to the soft ion crystal nature of perovskite, inherent bulk defects and energy level mismatch at the CsPbIBr2/carbon interface limit the performance of the device. In this study, we introduced aromatic benzyltrimethylammonium chloride (BTACl) as a passivation layer to passivate the surface and grain boundaries of the CsPbIBr2 film. Due to the reduction of perovskite defects and better energy level arrangement, carrier recombination is effectively suppressed and hole extraction is improved. The champion device achieves a maximum power conversion efficiency (PCE) of 11.30% with reduces hysteresis and open circuit voltage loss. In addition, unencapsulated equipment exhibits excellent stability in ambient air.

16.
Exp Eye Res ; 242: 109883, 2024 May.
Article in English | MEDLINE | ID: mdl-38561106

ABSTRACT

Corneal transplantation represents the primary therapeutic approach for managing corneal endothelial dysfunction, but corneal donors remain scarce. Anterior chamber cell injection emerges as a highly promising alternative strategy for corneal transplantation, with pluripotent stem cells (PSC) demonstrating considerable potential as an optimal cell source. Nevertheless, only a few studies have explored the differentiation of functional corneal endothelial-like cells originating from PSC. In this investigation, a chemical-defined protocol was successfully developed for the differentiation of functional corneal endothelial-like cells derived from human embryonic stem cells (hESC). The application of nicotinamide (NAM) exhibited a remarkable capability in suppressing the fibrotic phenotype, leading to the generation of more homogeneous and well-distinctive differentiated cells. Furthermore, NAM effectively suppressed the expression of genes implicated in endothelial cell migration and extracellular matrix synthesis. Notably, NAM also facilitated the upregulation of surface marker genes specific to functional corneal endothelial cells (CEC), including CD26 (-) CD44 (-∼+-) CD105 (-) CD133 (-) CD166 (+) CD200 (-). Moreover, in vitro functional assays were performed, revealing intact barrier properties and Na+/K+-ATP pump functionality in the differentiated cells treated with NAM. Consequently, our findings provide robust evidence supporting the capacity of NAM to enhance the differentiation of functional CEC originating from hESC, offering potential seed cells for therapeutic interventions of corneal endothelial dysfunction.


Subject(s)
Cell Differentiation , Endothelium, Corneal , Human Embryonic Stem Cells , Niacinamide , Humans , Cell Differentiation/drug effects , Niacinamide/pharmacology , Endothelium, Corneal/metabolism , Endothelium, Corneal/cytology , Endothelium, Corneal/drug effects , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Cells, Cultured , Vitamin B Complex/pharmacology , Flow Cytometry , Cell Movement/drug effects , Antigens, CD/metabolism , Antigens, CD/genetics
17.
FASEB J ; 37(7): e22998, 2023 07.
Article in English | MEDLINE | ID: mdl-37289136

ABSTRACT

Dementia is a well-known syndrome and Alzheimer's disease (AD) is the main cause of dementia. Lipids play a key role in the pathogenesis of AD, however, the prediction value of serum lipidomics on AD remains unclear. This study aims to construct a lipid score system to predict the risk of progression from mild cognitive impairment (MCI) to AD. First, we used the least absolute shrinkage and selection operator (LASSO) Cox regression model to select the lipids that can signify the progression from MCI to AD based on 310 older adults with MCI. Then we constructed a lipid score based on 14 single lipids using Cox regression and estimated the association between the lipid score and progression from MCI to AD. The prevalence of AD in the low-, intermediate- and high-score groups was 42.3%, 59.8%, and 79.8%, respectively. The participants in the intermediate- and high-score group had a 1.65-fold (95% CI 1.10 to 2.47) and 3.55-fold (95% CI 2.40 to 5.26) higher risk of AD, respectively, as compared to those with low lipid scores. The lipid score showed moderate prediction efficacy (c-statistics > 0.72). These results suggested that the score system based on serum lipidomics is useful for the prediction of progression from MCI to AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/complications , Lipidomics , Cognitive Dysfunction/etiology , Lipids , Disease Progression , Biomarkers
18.
Vet Res ; 55(1): 66, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778424

ABSTRACT

The lasso peptide microcin Y (MccY) effectively inhibits various serotypes of Salmonella in vitro, but the antibacterial effect against S. Pullorum in poultry is still unclear. This study was the first to evaluate the safety and anti-S. Pullorum infection of MccY in specific pathogen-free (SPF) chicks. The safety test showed that the body weight, IgA and IgM levels of serum, and cecal microbiota structure of 3 groups of chicks orally administrated with different doses of MccY (5 mg/kg, 10 mg/kg, 20 mg/kg) for 14 days were not significantly different from those of the control group. Then, the chicks were randomized into 3 groups for the experiment of anti-S. Pullorum infection: (I) negative control group (NC), (II) S. Pullorum-challenged group (SP, 5 × 108 CFU/bird), (III) MccY-treated group (MccY, 20 mg/kg). The results indicated that compared to the SP group, treatment of MccY increased body weight and average daily gain (P < 0.05), reduced S. Pullorum burden in feces, liver, and cecum (P < 0.05), enhanced the thymus, and decreased the spleen and liver index (P < 0.05). Additionally, MccY increased the jejunal villus height, lowered the jejunal and ileal crypt depth (P < 0.05), and upregulated the expression of IL-4, IL-10, ZO-1 in the jejunum and ileum, as well as CLDN-1 in the jejunum (P < 0.05) compared to the SP group. Furthermore, MccY increased probiotic flora (Barnesiella, etc.), while decreasing (P < 0.05) the relative abundance of pathogenic flora (Escherichia and Salmonella, etc.) compared to the SP group.


Subject(s)
Bacteriocins , Chickens , Gastrointestinal Microbiome , Poultry Diseases , Salmonella Infections, Animal , Animals , Gastrointestinal Microbiome/drug effects , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Bacteriocins/administration & dosage , Bacteriocins/pharmacology , Administration, Oral , Salmonella/drug effects , Salmonella/physiology , Specific Pathogen-Free Organisms , Animal Feed/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Random Allocation , Intestinal Barrier Function
19.
Value Health ; 27(2): 206-215, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37949354

ABSTRACT

OBJECTIVES: Pulmonary arterial hypertension (PAH) is a chronic, progressive disease of the pulmonary circulation characterized by vascular remodeling that, if untreated, can lead to right heart dysfunction and death. This analysis measured heterogeneity in patient preferences for PAH-specific treatment regimens. METHOD: Adult patients with PAH with slight to marked limitations during physical activity were recruited through a patient organization in Germany. Participants completed an online best-worst scaling case 3 survey. Patients chose among 3 hypothetical treatment profiles defined by 6 benefits and risks at varying levels. Participants completed 12 choice tasks. Preference heterogeneity was assessed using latent class analysis. RESULTS: A total of 83 participants (76% female) completed the survey. Best-fit model revealed 4 classes. Class 1 (19% of participants) assigned importance to multiple attributes particularly side effects, class 2 (34%) to physical activity limitations, class 3 (30%) to survival and physical activity limitations, and class 4 (17%) to survival. No differences in sociodemographic characteristics were observed across classes. Compared with other classes, class 4 was most likely to report having marked physical activity limitations (79%) and needing daily help (100%), while considering higher daily activity levels to be ordinary (walking >1 km [71%] or climbing several flights of stairs [50%]). CONCLUSION: This first patient preference study in a PAH population suggests that physical activity limitations in addition to survival matter most to patients; however, preference heterogeneity between groups of patients was observed. Patient preferences should be considered in treatment decision making to better balance patient's expectations regarding the known risk-benefit ratio of treatment.


Subject(s)
Pulmonary Arterial Hypertension , Adult , Humans , Female , Male , Patient Preference , Latent Class Analysis , Surveys and Questionnaires , Risk Assessment
20.
Ther Drug Monit ; 46(2): 138-140, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37876261

ABSTRACT

BACKGROUND: This report describes the successful rescue of a 12-year-old girl who ingested large quantities of clonazepam tablets. METHODS: The patient was promptly treated with flumazenil and hemoperfusion to alleviate the symptoms of central depression. Therapeutic drug monitoring was used to evaluate detoxification efficacy. The authors analyzed the rescue protocol for clonazepam poisoning based on the pathophysiology, clinical manifestations, and pharmacokinetics of clonazepam overdose. RESULTS: The patient responded well to the treatment and was discharged from the hospital without adverse events. CONCLUSIONS: This case study demonstrated the effectiveness and safety of combining flumazenil with hemoperfusion as a treatment for clonazepam poisoning. This study aimed to provide insights into more effective methods for treating clonazepam overdose and contribute to the ongoing issue of managing this condition.


Subject(s)
Clonazepam , Flumazenil , Child , Female , Humans , Clonazepam/poisoning , Flumazenil/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL