Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.909
Filter
Add more filters

Publication year range
1.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007262

ABSTRACT

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Subject(s)
Immunization, Passive/methods , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Gene Products, env/immunology , Gene Products, gag/immunology , Gene Products, pol/immunology , HIV-1/immunology , Immunoglobulin G/immunology , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome/immunology
2.
Nat Immunol ; 22(12): 1515-1523, 2021 12.
Article in English | MEDLINE | ID: mdl-34811542

ABSTRACT

Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.


Subject(s)
Antibodies, Bacterial/blood , BCG Vaccine/administration & dosage , Immunogenicity, Vaccine , Immunoglobulin M/blood , Mycobacterium tuberculosis/immunology , Tuberculosis/prevention & control , Vaccination , Administration, Intravenous , Animals , Biomarkers/blood , Disease Models, Animal , Host-Pathogen Interactions , Macaca mulatta , Mycobacterium tuberculosis/pathogenicity , Time Factors , Tuberculosis/immunology , Tuberculosis/microbiology
3.
Cell ; 165(3): 656-67, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27085913

ABSTRACT

The earliest events following mucosal HIV-1 infection, prior to measurable viremia, remain poorly understood. Here, by detailed necropsy studies, we show that the virus can rapidly disseminate following mucosal SIV infection of rhesus monkeys and trigger components of the inflammasome, both at the site of inoculation and at early sites of distal virus spread. By 24 hr following inoculation, a proinflammatory signature that lacked antiviral restriction factors was observed in viral RNA-positive tissues. The early innate response included expression of NLRX1, which inhibits antiviral responses, and activation of the TGF-ß pathway, which negatively regulates adaptive immune responses. These data suggest a model in which the virus triggers specific host mechanisms that suppress the generation of antiviral innate and adaptive immune responses in the first few days of infection, thus facilitating its own replication. These findings have important implications for the development of vaccines and other strategies to prevent infection.


Subject(s)
Inflammasomes/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , Bone Marrow/immunology , Immunity, Innate , Immunity, Mucosal , Killer Cells, Natural/immunology , Macaca mulatta , Mitochondrial Proteins/metabolism , Monocytes/immunology , T-Lymphocytes/immunology , Transcriptome , Transforming Growth Factor beta/metabolism , Virus Replication
4.
Nature ; 618(7967): 992-999, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316666

ABSTRACT

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Subject(s)
Archaea , Eukaryota , Phylogeny , Archaea/classification , Archaea/cytology , Archaea/genetics , Eukaryota/classification , Eukaryota/cytology , Eukaryota/genetics , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Prokaryotic Cells/classification , Prokaryotic Cells/cytology , Datasets as Topic , Gene Duplication , Evolution, Molecular
5.
Cell ; 155(3): 531-9, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24243013

ABSTRACT

The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:


Subject(s)
AIDS Vaccines/immunology , HIV-1 , Animals , Antibody Formation , Female , HIV Antigens/immunology , Human Immunodeficiency Virus Proteins/immunology , Immunity, Cellular , Macaca mulatta , Male , Molecular Sequence Data , Specific Pathogen-Free Organisms
6.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012823

ABSTRACT

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Subject(s)
Neurons , Optogenetics , Silicon , Animals , Silicon/chemistry , Neurons/physiology , Mice , Optogenetics/methods , Calcium/metabolism , Light , Brain/physiology
7.
Genes Dev ; 33(1-2): 90-102, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30567997

ABSTRACT

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Gene Expression Regulation/genetics , RNA, Small Interfering/genetics , Amino Acid Motifs , Animals , Caenorhabditis elegans Proteins/genetics , Genome, Helminth/genetics , Protein Binding , Proteomics , RNA, Small Interfering/biosynthesis
8.
Plant Cell ; 35(11): 4002-4019, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37648256

ABSTRACT

Heading date (flowering time), which greatly influences regional and seasonal adaptability in rice (Oryza sativa), is regulated by many genes in different photoperiod pathways. Here, we characterized a heading date gene, Early heading date 5 (Ehd5), using a modified bulked segregant analysis method. The ehd5 mutant showed late flowering under both short-day and long-day conditions, as well as reduced yield, compared to the wild type. Ehd5, which encodes a WD40 domain-containing protein, is induced by light and follows a circadian rhythm expression pattern. Transcriptome analysis revealed that Ehd5 acts upstream of the flowering genes Early heading date 1 (Ehd1), RICE FLOWERING LOCUS T 1 (RFT1), and Heading date 3a (Hd3a). Functional analysis showed that Ehd5 directly interacts with Rice outermost cell-specific gene 4 (Roc4) and Grain number, plant height, and heading date 8 (Ghd8), which might affect the formation of Ghd7-Ghd8 complexes, resulting in increased expression of Ehd1, Hd3a, and RFT1. In a nutshell, these results demonstrate that Ehd5 functions as a positive regulator of rice flowering and provide insight into the molecular mechanisms underlying heading date.


Subject(s)
Flowers , Oryza , Circadian Rhythm , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Oryza/genetics , Oryza/metabolism , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , WD40 Repeats/genetics
9.
Nature ; 578(7795): 425-431, 2020 02.
Article in English | MEDLINE | ID: mdl-32051592

ABSTRACT

Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.


Subject(s)
Bacteria/virology , Bacteriophages/classification , Bacteriophages/genetics , Earth, Planet , Ecosystem , Genome, Viral/genetics , Phylogeny , Amino Acyl-tRNA Synthetases/genetics , Animals , Bacteria/genetics , Bacteriophages/isolation & purification , Bacteriophages/metabolism , Biodiversity , CRISPR-Cas Systems/genetics , Evolution, Molecular , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Viral , Host Specificity , Humans , Lakes/virology , Molecular Sequence Annotation , Oceans and Seas , Prophages/genetics , Protein Biosynthesis , RNA, Transfer/genetics , Ribosomal Proteins/genetics , Seawater/virology , Soil Microbiology , Transcription, Genetic
10.
Nucleic Acids Res ; 52(D1): D762-D769, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37962425

ABSTRACT

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains over 315 000 bacterial and archaeal genomes and 236 million proteins with up-to-date and consistent annotation. In the past 3 years, we have expanded the diversity of the RefSeq collection by including the best quality metagenome-assembled genomes (MAGs) submitted to INSDC (DDBJ, ENA and GenBank), while maintaining its quality by adding validation checks. Assemblies are now more stringently evaluated for contamination and for completeness of annotation prior to acceptance into RefSeq. MAGs now account for over 17000 assemblies in RefSeq, split over 165 orders and 362 families. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP), which is used to annotate nearly all RefSeq assemblies include better detection of protein-coding genes. Nearly 83% of RefSeq proteins are now named by a curated Protein Family Model, a 4.7% increase in the past three years ago. In addition to literature citations, Enzyme Commission numbers, and gene symbols, Gene Ontology terms are now assigned to 48% of RefSeq proteins, allowing for easier multi-genome comparison. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/. PGAP is available as a stand-alone tool able to produce GenBank-ready files at https://github.com/ncbi/pgap.


Subject(s)
Archaea , Bacteria , Databases, Nucleic Acid , Metagenome , Archaea/genetics , Bacteria/genetics , Databases, Nucleic Acid/standards , Databases, Nucleic Acid/trends , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Internet , Molecular Sequence Annotation , Proteins/genetics
11.
Proc Natl Acad Sci U S A ; 120(31): e2302938120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487095

ABSTRACT

Neutrophils are the primary cell type involved in lung ischemia-reperfusion injury (IRI), which remains a frequent and morbid complication after organ transplantation. Endogenous lipid mediators that become activated during acute inflammation-resolution have gained increasing recognition for their protective role(s) in promoting the restoration of homeostasis, but their influence on early immune responses following transplantation remains to be uncovered. Resolvin D1, 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (RvD1), is a potent stereoselective mediator that exhibits proresolving and anti-inflammatory actions in the setting of tissue injury. Here, using metabololipidomics, we demonstrate that endogenous proresolving mediators including RvD1 are increased in human and murine lung grafts immediately following transplantation. In mouse grafts, we observe lipid mediator class switching early after reperfusion. We use intravital two-photon microscopy to reveal that RvD1 treatment significantly limits early neutrophil infiltration and swarming, thereby ameliorating early graft dysfunction in transplanted syngeneic lungs subjected to severe IRI. Through integrated analysis of single-cell RNA sequencing data of donor and recipient immune cells from lung grafts, we identify transcriptomic changes induced by RvD1. These results support a role for RvD1 as a potent modality for preventing early neutrophil-mediated tissue damage after lung IRI that may be therapeutic in the clinics.


Subject(s)
Docosahexaenoic Acids , Organ Transplantation , Humans , Animals , Mice , Neutrophils , Lung
12.
Proc Natl Acad Sci U S A ; 119(10): e2111537119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238643

ABSTRACT

Ischemia reperfusion injury represents a common pathological condition that is triggered by the release of endogenous ligands. While neutrophils are known to play a critical role in its pathogenesis, the tissue-specific spatiotemporal regulation of ischemia-reperfusion injury is not understood. Here, using oxidative lipidomics and intravital imaging of transplanted mouse lungs that are subjected to severe ischemia reperfusion injury, we discovered that necroptosis, a nonapoptotic form of cell death, triggers the recruitment of neutrophils. During the initial stages of inflammation, neutrophils traffic predominantly to subpleural vessels, where their aggregation is directed by chemoattractants produced by nonclassical monocytes that are spatially restricted in this vascular compartment. Subsequent neutrophilic disruption of capillaries resulting in vascular leakage is associated with impaired graft function. We found that TLR4 signaling in vascular endothelial cells and downstream NADPH oxidase 4 expression mediate the arrest of neutrophils, a step upstream of their extravasation. Neutrophil extracellular traps formed in injured lungs and their disruption with DNase prevented vascular leakage and ameliorated primary graft dysfunction. Thus, we have uncovered mechanisms that regulate the initial recruitment of neutrophils to injured lungs, which result in selective damage to subpleural pulmonary vessels and primary graft dysfunction. Our findings could lead to the development of new therapeutics that protect lungs from ischemia reperfusion injury.


Subject(s)
Endothelium, Vascular/metabolism , Lung/metabolism , Necroptosis , Neutrophil Infiltration , Neutrophils/metabolism , Reperfusion Injury/metabolism , Animals , Endothelium, Vascular/injuries , Humans , Lung/blood supply , Mice , Mice, Knockout , Reperfusion Injury/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
13.
BMC Genomics ; 25(1): 584, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862928

ABSTRACT

MOTIVATION: The rational modelling of the relationship among drugs, targets and diseases is crucial for drug retargeting. While significant progress has been made in studying binary relationships, further research is needed to deepen our understanding of ternary relationships. The application of graph neural networks in drug retargeting is increasing, but further research is needed to determine the appropriate modelling method for ternary relationships and how to capture their complex multi-feature structure. RESULTS: The aim of this study was to construct relationships among drug, targets and diseases. To represent the complex relationships among these entities, we used a heterogeneous graph structure. Additionally, we propose a DTD-GNN model that combines graph convolutional networks and graph attention networks to learn feature representations and association information, facilitating a more thorough exploration of the relationships. The experimental results demonstrate that the DTD-GNN model outperforms other graph neural network models in terms of AUC, Precision, and F1-score. The study has important implications for gaining a comprehensive understanding of the relationships between drugs and diseases, as well as for further research and application in exploring the mechanisms of drug-disease interactions. The study reveals these relationships, providing possibilities for innovative therapeutic strategies in medicine.


Subject(s)
Drug Repositioning , Neural Networks, Computer , Drug Repositioning/methods , Humans , Algorithms , Computational Biology/methods
14.
Am J Transplant ; 24(2): 280-292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37619922

ABSTRACT

The presence of bronchus-associated lymphoid tissue (BALT) in donor lungs has been suggested to accelerate graft rejection after lung transplantation. Although chronic smoke exposure can induce BALT formation, the impact of donor cigarette use on alloimmune responses after lung transplantation is not well understood. Here, we show that smoking-induced BALT in mouse donor lungs contains Foxp3+ T cells and undergoes dynamic restructuring after transplantation, including recruitment of recipient-derived leukocytes to areas of pre-existing lymphoid follicles and replacement of graft-resident donor cells. Our findings from mouse and human lung transplant data support the notion that a donor's smoking history does not predispose to acute cellular rejection or prevent the establishment of allograft acceptance with comparable outcomes to nonsmoking donors. Thus, our work indicates that BALT in donor lungs is plastic in nature and may have important implications for modulating proinflammatory or tolerogenic immune responses following transplantation.


Subject(s)
Lung Transplantation , Lymphoid Tissue , Mice , Humans , Animals , Lung Transplantation/adverse effects , Immune Tolerance , Graft Rejection/etiology , Graft Rejection/prevention & control , Lung , Bronchi , Smoking
15.
Am J Transplant ; 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38522826

ABSTRACT

Neutrophils exacerbate pulmonary ischemia-reperfusion injury (IRI) resulting in poor short and long-term outcomes for lung transplant recipients. Glycolysis powers neutrophil activation, but it remains unclear if neutrophil-specific targeting of this pathway will inhibit IRI. Lipid nanoparticles containing the glycolysis flux inhibitor 2-deoxyglucose (2-DG) were conjugated to neutrophil-specific Ly6G antibodies (NP-Ly6G[2-DG]). Intravenously administered NP-Ly6G(2-DG) to mice exhibited high specificity for circulating neutrophils. NP-Ly6G(2-DG)-treated neutrophils were unable to adapt to hypoglycemic conditions of the lung airspace environment as evident by the loss of demand-induced glycolysis, reductions in glycogen and ATP content, and an increased vulnerability to apoptosis. NP-Ly6G(2-DG) treatment inhibited pulmonary IRI following hilar occlusion and orthotopic lung transplantation. IRI protection was associated with less airspace neutrophil extracellular trap generation, reduced intragraft neutrophilia, and enhanced alveolar macrophage efferocytotic clearance of neutrophils. Collectively, our data show that pharmacologically targeting glycolysis in neutrophils inhibits their activation and survival leading to reduced pulmonary IRI.

16.
Anal Chem ; 96(17): 6523-6527, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38634570

ABSTRACT

Complete sample digestion is a prerequisite for acquiring high-quality analytical results for geological samples. Closed-vessel acid digestion (bomb) has typically been used for the total digestion of refractory geological samples. However, the long digestion time (4-5 days) and insoluble fluoride complexes still pose challenges for digesting refractory geological samples using this approach. In this study, an efficient and simplified digestion technique combining ultrafine powders from planetary ball milling with bomb digestion was developed for trace element analysis of refractory geological samples: peridotite and granitoid. The method shows two significant improvements compared with previous approaches. (1) By performing dry planetary ultrafine milling, the initial 200 mesh peridotite (<74 µm) could be reduced to 800 mesh (<20 µm) in 6 min at a ball-to-powder mass ratio of approximately 15 using 3 mm tungsten carbide milling balls. (2) Complete peridotite and granitoid dissolution were achieved in approximately 2 h, 60 times faster than what is achievable using previous methods (2 h vs 120 h). Moreover, ultrafine powders effectively suppressed insoluble fluoride formation during bomb digestion. A suite of peridotite and granitoid reference materials were measured to evaluate the stability of this method. This efficient, simple, and reliable sample digestion method could benefit geological, food, environmental, and other fields requiring solid sample decomposition via wet acid, fusion, combustion, or dry ashing.

17.
Opt Express ; 32(3): 4427-4435, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297644

ABSTRACT

Multimode fiber lasers have become a new platform for investigating nonlinear phenomena since the report on spatiotemporal mode-locking. In this work, the multimode soliton pulsation with a tunable period is achieved in a spatiotemporal mode-locked fiber laser. It demonstrates that the pulsation period drops while increasing the pump power. Moreover, it is found that different transverse modes have the same pulsation period, asynchronous pulsation evolution and different dynamical characteristics through the spatial sampling technique and the dispersive Fourier transform technique. To further verify the experimental results, we numerically investigate the influences of the gain and the loss on the pulsation properties. It is found that within a certain parameter range, the pulsation period drops and rises linearly with the increase of the gain and the loss, respectively. The obtained results contribute to understanding the formation and regulating of soliton pulsations in fiber lasers.

18.
Microb Pathog ; 189: 106595, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387848

ABSTRACT

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Subject(s)
Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Titanium , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Biofilms , Metal Nanoparticles/chemistry
19.
Opt Lett ; 49(6): 1575-1578, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489454

ABSTRACT

Spatiotemporal mode-locked (STML) fiber lasers have become a new platform for investigating nonlinear phenomena. In this work, spatiotemporal dual-periodic soliton pulsation (SDSP) is firstly observed in an STML fiber laser. It is found that in the SDSP, the long-period pulsations (LPPs) of different transverse modes are synchronous, while the short-period pulsations (SPPs) exhibit asynchronous modulations. The numerical simulation confirms the experimental results and further reveals that the proportion of transverse mode components can manipulate the periods of the LPP and SPP but does not affect the synchronous and asynchronous pulsations of different transverse modes. The obtained results bring the study of spatiotemporal dissipative soliton pulsation into the multi-period modulation stage, which helps to understand the complex spatiotemporal dynamics in STML fiber lasers and discover new dynamics in high-dimensional nonlinear systems.

20.
Cytotherapy ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38888526

ABSTRACT

The one-year survival rate for patients experiencing a relapse of B-cell acute lymphocytic leukemia (B-ALL) following hematopoietic stem cell transplantation (HSCT) is approximately 30%. Patients experiencing a relapse after allogeneic HSCT frequently encounter difficulties in obtaining autologous CAR-T products. We conducted a study involving 14 patients who received donor-derived CAR-T therapy for relapsed B-ALL following HSCT between August 2019 and May 2023 in our center. The results revealed a CR/CRi rate of 78.6% (11/14), a GVHD rate of 21.4% (3/14), and a 1-year overall survival (OS) rate of 56%. Decreased bone marrow donor cell chimerism in 9 patients recovered after CAR-T therapy. The main causes of death were disease progression and infection. Further analysis showed that GVHD (HR 7.224, 95% CI 1.42-36.82, P = 0.017) and platelet recovery at 30 days (HR 6.807, 95% CI 1.61-28.83, P = 0.009) are significantly associated with OS after CAR-T therapy. Based on the findings, we conclude that donor-derived CAR-T cells are effective in treating relapsed B-ALL patients following HSCT. Additionally, GVHD and poor platelet recovery impact OS, but further verification with a larger sample size is needed.

SELECTION OF CITATIONS
SEARCH DETAIL