Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 24(1): e55197, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36367221

ABSTRACT

Transposable elements (TEs) are active in neuronal cells raising the question whether TE insertions contribute to risk of neuropsychiatric disease. While genome-wide association studies (GWAS) serve as a tool to discover genetic loci associated with neuropsychiatric diseases, unfortunately GWAS do not directly detect structural variants such as TEs. To examine the role of TEs in psychiatric and neurologic disease, we evaluated 17,000 polymorphic TEs and find 76 are in linkage disequilibrium with disease haplotypes (P < 10-6 ) defined by GWAS. From these 76 polymorphic TEs, we identify potentially causal candidates based on having insertions in genomic regions of regulatory chromatin and on having associations with altered gene expression in brain tissues. We show that lead candidate insertions have regulatory effects on gene expression in human neural stem cells altering the activity of a minimal promoter. Taken together, we identify 10 polymorphic TE insertions that are potential candidates on par with other variants for having a causal role in neurologic and psychiatric disorders.


Subject(s)
Mental Disorders , Retroelements , Humans , Retroelements/genetics , Genome-Wide Association Study , Genome , Genetic Loci , Mental Disorders/genetics , DNA Transposable Elements/genetics , Evolution, Molecular
2.
Plant Physiol ; 192(2): 1569-1583, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36864608

ABSTRACT

Although microRNA408 (miR408) is a highly conserved miRNA, the miR408 response to salt stress differs among plant species. Here, we show that miR408 transcripts are strongly repressed by salt stress and methyl viologen treatment in maize (Zea mays). Application of N, N1-dimethylthiourea partly relieved the NaCl-induced down-regulation of miR408. Transgenic maize overexpressing MIR408b is hypersensitive to salt stress. Overexpression of MIR408b enhanced the rate of net Na+ efflux, caused Na+ to locate in the inter-cellular space, reduced lignin accumulation, and reduced the number of cells in vascular bundles under salt stress. We further demonstrated that miR408 targets ZmLACCASE9 (ZmLAC9). Knockout of MIR408a or MIR408b or overexpression of ZmLAC9 increased the accumulation of lignin, thickened the walls of pavement cells, and improved salt tolerance of maize. Transcriptome profiles of the wild-type and MIR408b-overexpressing transgenic maize with or without salt stress indicated that miR408 negatively regulates the expression of cell wall biogenesis genes under salt conditions. These results indicate that miR408 negatively regulates salt tolerance by regulating secondary cell wall development in maize.


Subject(s)
Salt Tolerance , Zea mays , Salt Tolerance/genetics , Zea mays/metabolism , Lignin/metabolism , Plants, Genetically Modified/metabolism , Salt Stress/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Opt Express ; 32(4): 5826-5836, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439299

ABSTRACT

Mid-infrared (MIR) dual-comb spectroscopy (DCS) is a highly effective method for molecular metrology of rovibrational transition spectra in a quick accurate manner. However, due to limited comb frequency instability, manipulating coherence between two frequency combs to accomplish high-quality spectral analysis in the MIR region is a huge challenge. Here, we developed a comb-teeth resolved MIR DCS based on active phase control cooperating with a CWs-dependent (CWD) interferogram timing correction. Firstly, four meticulously engineered actuators were individually integrated into two near-infrared (NIR) seed combs to facilitate active coherence maintenance. Subsequently, two PPLN waveguides were adopted to achieve parallel difference frequency generations (DFG), directly achieving a coherent MIR dual-comb spectrometer. To improve coherence and signal-to-noise ratio (SNR), a CWD resampled interferogram timing correction was used to optimize the merit of DCS from 7.5 × 105 to 2.5 × 106. Meanwhile, we carried out the measurement of MIR DCS on the methane hot-band absorption spectra (v3 band), which exhibited a good agreement with HITRAN by a standard deviation on recording residual of 0.76%. These experimental results confirm that this MIR DCS with CWD interferogram timing correction has significant potential to characterize the rovibrational transitions of MIR molecules.

4.
Org Biomol Chem ; 22(13): 2558-2561, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38450726

ABSTRACT

An efficient and biomimetic synthetic approach to 3,4-diindolylpyrrole-2,5-dicarboxylate derivatives, including lycogarubin C, lynamicin D and related analogues, was discovered. The crucial transformation included the one-pot formation of two C-N bonds and one C-C bond to construct characteristic pyrrole rings.


Subject(s)
Biomimetics , Pyrroles , Pyrroles/chemistry , Indoles/chemistry
5.
Org Biomol Chem ; 22(3): 472-476, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38099809

ABSTRACT

An array of pyrrolo[1,2-a]quinoxaline derivatives were achieved with moderate to good yields via the electrochemical redox reaction, which includes the functionalization of C(sp3)-H bonds and the construction of C-C and C-N bonds. In this atom economic reaction, THF was used as both a reactant and a solvent, and H2 was the sole by-product.

6.
Ecotoxicol Environ Saf ; 270: 115878, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38150748

ABSTRACT

Aluminum (Al) exposure has been linked to the development of a variety of neurodegenerative diseases. However, whether m6A RNA methylation participated in Al-induced neurotoxicity remain to be defined. In this study, mice were administrated with aluminum-lactate at dose of 220 mg/kg. bw by gavage for 3 months. Meanwhile, the primary hippocampal neurons were isolated and treated with 0, 50, 100, 150 µM aluminum-lactate, respectively for 7 days. Al exposure caused neuronal shrinkage, decreased Nissl bodies, and increased apoptosis. In accordance, in vitro studies also showed that Al exposure led to neuronal apoptosis in a dose-dependent manner, together with the decline in m6A RNA methylation levels. Moreover, the mRNA expression of Mettl3, Mettl14, Fto, and Ythdf2 were decreased upon Al exposure. Notably, the protein expression of METTL3 was dramatically down-regulated by 42% and 35% in Al-treated mice and neurons, suggesting METTL3 might exert a crucial role in Al-induced neurotoxicity. We next established a mouse model with hippocampus-specific overexpressing of Mettl3 gene to confirm the regulatory role of RNA methylation and found that METTL3 overexpression relieved the neurological injury induced by Al. The integrated MeRIP-seq and RNA-seq analysis elucidated that 631 genes were differentially expressed at both m6A RNA methylation and mRNA expression. Notably, EGFR tyrosine kinase inhibitor resistance, Rap1 signaling pathway, protein digestion and absorption might be involved in Al-induced neurotoxicity. Moreover, VEGFA, Thbs1, and PDGFB might be the central molecules. Collectively, our findings provide the novel sight into the role of m6A RNA methylation in neurodegenerative disease induced by Al.


Subject(s)
Aluminum , Neurodegenerative Diseases , Mice , Animals , Aluminum/toxicity , Aluminum/metabolism , RNA Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Lactates , RNA/metabolism
7.
Proteomics ; 23(3-4): e2100387, 2023 02.
Article in English | MEDLINE | ID: mdl-36422574

ABSTRACT

The turnover measurement of proteins and proteoforms has been largely facilitated by workflows coupling metabolic labeling with mass spectrometry (MS), including dynamic stable isotope labeling by amino acids in cell culture (dynamic SILAC) or pulsed SILAC (pSILAC). Very recent studies including ours have integrated themeasurement of post-translational modifications (PTMs) at the proteome level (i.e., phosphoproteomics) with pSILAC experiments in steady state systems, exploring the link between PTMs and turnover at the proteome-scale. An open question in the field is how to exactly interpret these complex datasets in a biological perspective. Here, we present a novel pSILAC phosphoproteomic dataset which was obtained during a dynamic process of cell starvation using data-independent acquisition MS (DIA-MS). To provide an unbiased "hypothesis-free" analysis framework, we developed a strategy to interrogate how phosphorylation dynamically impacts protein turnover across the time series data. With this strategy, we discovered a complex relationship between phosphorylation and protein turnover that was previously underexplored. Our results further revealed a link between phosphorylation stoichiometry with the turnover of phosphorylated peptidoforms. Moreover, our results suggested that phosphoproteomic turnover diversity cannot directly explain the abundance regulation of phosphorylation during cell starvation, underscoring the importance of future studies addressing PTM site-resolved protein turnover.


Subject(s)
Protein Processing, Post-Translational , Proteome , Phosphorylation , Proteome/analysis , Proteolysis , Mass Spectrometry/methods , Isotope Labeling/methods
8.
J Biol Chem ; 298(5): 101918, 2022 05.
Article in English | MEDLINE | ID: mdl-35405096

ABSTRACT

Protein phosphatase 2A (PP2A) is a serine/threonine dephosphorylating enzyme complex that plays numerous roles in biological processes, including cell growth and metabolism. However, its specific actions in many of these critical pathways are unclear. To explore mechanisms underlying metabolic enzyme regulation in the liver, we investigated the key pathways involved in regulation of xenobiotic-metabolizing enzymes in a mouse model with hepatocyte-specific deletion of Ppp2r1a, encoding the Aα subunit of PP2A. We performed transcriptome and phosphoproteome analysis in mouse livers at the age of 3 months and identified 2695 differentially expressed genes and 549 upregulated phosphoproteins in homozygous knockout mouse livers compared with WT littermates. In particular, the expression of metabolic enzymes Cyp2e1, Cyp1a1, Cyp1a2, Mdr1a, and Abcg2 was dramatically altered in homozygous knockout mouse livers. We also demonstrated that activation of PP2A reversed the decline of metabolic enzyme expression in primary mouse hepatocytes. We found that specific PP2A holoenzymes were involved in metabolic enzyme induction through dephosphorylation of transcription factors, nuclear receptors, or the target enzymes themselves, leading to dysregulation of xenobiotic metabolism or drug-induced hepatotoxicity. Notably, we confirmed that a regulatory axis, PP2A B56α-aryl hydrocarbon receptor-Cyp1a1, was involved in benzo(a)pyrene-induced cytotoxicity through dephosphorylation of the metabolic nuclear receptor, aryl hydrocarbon receptor, at serine 36. In addition, we showed that PP2A B56δ complexes directly dephosphorylated the multidrug efflux pump MDR1 (encoded by multi-drug resistance gene 1), contributing to drug resistance against the chemotherapeutic 5-fluorouracil. Taken together, these novel findings demonstrate the involvement of PP2A in the regulation of liver metabolism.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Drug Resistance , Protein Phosphatase 2 , Receptors, Aryl Hydrocarbon , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cytochrome P-450 CYP1A1/metabolism , Drug Resistance/genetics , Mice , Mice, Knockout , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Xenobiotics
9.
J Am Chem Soc ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36753634

ABSTRACT

Microtubule-associated protein tau is essential for microtubule assembly and stabilization. Hyperphosphorylation of the microtubule-associated protein tau plays an important pathological role in the development of Alzheimer's disease and other tauopathies. In vivo studies using kinase inhibitors suggest that reducing tau phosphorylation levels has therapeutic potential; however, such approaches showed limited benefits. We sought to further develop our phosphorylation targeting chimera (PhosTAC) technology to specifically induce tau dephosphorylation. Herein, we use small molecule-based PhosTACs to recruit tau to PP2A, a native tau phosphatase. PhosTACs induced the formation of a stable ternary complex, leading to rapid, efficient, and sustained tau dephosphorylation, which also correlated with the enhanced downregulation of tau protein. Mass spectrometry data validated that PhosTACs downregulated multiple phosphorylation sites of tau. We believe that PhosTAC possesses several advantages over current strategies to modulate tau phosphorylation and represents a new avenue for disease-modifying therapies for tauopathies.

10.
BMC Plant Biol ; 23(1): 20, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627574

ABSTRACT

Although the interaction between P and Zn has long been recognized in plants, the physiological and molecular mechanisms underlying P and Zn interactions are poorly understood. We show here that P supply decreases the Zn concentration in maize shoots and roots. Compared to +P + Zn (addition of both P and Zn), +P-Zn reduced and -P-Zn increased the total length of 1° lateral roots (LRs). Under +P + Zn, both P and Zn concentrations were lower in the sl1 mutant roots than in wild-type (WT) maize roots, and P accumulation did not reduce the Zn concentration in ll1 mutant roots. Transcriptome profiling showed that the auxin signaling pathway contributed to P-mediated Zn homeostasis in maize. Auxin production and distribution were altered by changes in P and Zn supply. Cytosolic Zn co-localized with auxin accumulation under +P + Zn. Exogenous application of 1-NAA and L-Kyn altered the P-mediated root system architecture (RSA) under Zn deficiency. -P-Zn repressed the expression of miR167. Overexpression of ZmMIR167b increased the lengths of 1° LRs and the concentrations of P and Zn in maize. These results indicate that auxin-dependent RSA is important for P-mediated Zn homeostasis in maize.HighlightAuxin-dependent RSA is important for P-mediated Zn homeostasis in maize.


Subject(s)
Phosphorus , Zea mays , Phosphorus/metabolism , Zea mays/metabolism , Plant Roots/metabolism , Indoleacetic Acids/metabolism , Homeostasis , Zinc/metabolism , Signal Transduction
11.
PLoS Pathog ; 17(2): e1009305, 2021 02.
Article in English | MEDLINE | ID: mdl-33556144

ABSTRACT

Ionizing radiation-induced tissue damage recruits monocytes into the exposed area where they are differentiated to macrophages. These implement phagocytic removal of dying cells and elicit an acute inflammatory response, but can also facilitate tumorigenesis due to production of anti-inflammatory cytokines. Using primary human monocyte-derived macrophages (MDMs) and the THP1 monocytic cell line, we demonstrate that gamma radiation triggers monocyte differentiation toward the macrophage phenotype with increased expression of type I interferons (IFN-I) and both pro- and anti-inflammatory macrophage activation markers. We found that these changes correlate with significantly upregulated expression of 622 retroelements from various groups, particularly of several clades of human endogenous retroviruses (HERVs). Elevated transcription was detected in both sense and antisense directions in the HERV subgroups tested, including the most genetically homogeneous clade HML-2. The level of antisense transcription was three- to five-fold higher than of the sense strand levels. Using a proximity ligation assay and immunoprecipitation followed by RNA quantification, we identified an increased amount of the dsRNA receptors MDA-5 and TLR3 bound to an equivalent number of copies of sense and antisense chains of HERVK HML-2 RNA. This binding triggered MAVS-associated signaling pathways resulting in increased expression of IFN-I and inflammation related genes that enhanced the cumulative inflammatory effect of radiation-induced senescence. HML-2 knockdown was accompanied with reduced expression and secretion of IFNα, pro-inflammatory (IL-1ß, IL-6, CCL2, CCL3, CCL8, and CCL20) and anti-inflammatory (IL10) modulators in irradiated monocytes and MDMs. Taken together, our data indicate that radiation stress-induced HERV expression enhances the IFN-I and cytokine response and results in increased levels of pro-inflammatory modulators along with expression of anti-inflammatory factors associated with the macrophage tumorigenic phenotype.


Subject(s)
Endogenous Retroviruses/genetics , Gamma Rays , Inflammation/immunology , Macrophage Activation/immunology , Macrophages/immunology , Monocytes/immunology , Retroelements/genetics , Cell Differentiation , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Macrophages/radiation effects , Monocytes/metabolism , Monocytes/radiation effects , Transcriptome
12.
Plant Physiol ; 189(2): 1095-1109, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35285505

ABSTRACT

Recent findings have revealed the important roles of microRNAs (miRNAs) in the secondary responses to oxidative damage caused by iron (Fe) excess. However, the functional importance of miRNAs in plant responses to Fe deficiency remains to be explored. Here, we show that the expression level of miR164 in Arabidopsis (Arabidopsis thaliana) roots was repressed by Fe deficiency. Primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRON-REGULATED TRANSPORTER1 (IRT1) and FERRIC REDUCTION OXIDASE2 (FRO2) were higher in the mir164b mutant than in the wild-type (WT) under Fe-deficient conditions. Analysis of the Fe concentrations and ferric reductase activities in the roots of miR164 knockdown transgenic plants showed that members of the miR164 family had different functions in Fe-deficiency responses. Promoter::GUS analysis showed that NAM/ATAF/CUC (NAC) domain transcription factor5 (NAC5) is regulated at both transcriptional and posttranscriptional levels under Fe-deficient conditions. Transgenic Arabidopsis plants overexpressing NAC5 were more tolerant of Fe deficiency than the WT. NAC5 has transactivation activity and directly transactivates the expression of Nuclear Factor Y, Subunit A8 (NFYA8), as demonstrated by chromatin immunoprecipitation followed by quantitative polymerase chain reaction, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assay. Like overexpression of NAC5, overexpression of NFYA8 increases primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRT1 and FRO2 under Fe-deficient conditions. Thus, MIR164b is important for Fe-deficiency responses by its regulation of the NAC5-NFYA8 module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , CCAAT-Binding Factor , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , RNA, Messenger/metabolism
13.
Ann Neurol ; 92(4): 545-561, 2022 10.
Article in English | MEDLINE | ID: mdl-35801347

ABSTRACT

OBJECTIVE: Human endogenous retroviruses have been implicated in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Expression of human endogenous retrovirus K (HERV-K) subtype HML-2 envelope (Env) in human neuronal cultures and in transgenic mice results in neurotoxicity and neurodegeneration, and mice expressing HML-2 Env display behavioral and neuromuscular characteristics resembling ALS. This study aims to characterize the neurotoxic properties of HML-2 Env. METHODS: Env neurotoxicity was detected in ALS cerebrospinal fluid and confirmed using recombinant Env protein in a cell-based assay and a mouse model. The mechanism of neurotoxicity was assessed with immunoprecipitation followed by mass spectrometry and Western blot, and by screening a panel of inhibitors. RESULTS: We observed that recombinant HML-2 Env protein caused neurotoxicity resulting in neuronal cell death, retraction of neurites, and decreased neuronal electrical activity. Injection of the Env protein into the brains of mice also resulted in neuronal cell death. HML-2 Env protein was also found in the cerebrospinal fluid of patients with sporadic ALS. The neurotoxic properties of the Env and the cerebrospinal fluid could be rescued with the anti-Env antibody. The Env was found to bind to CD98HC complexed to ß1 integrin on the neuronal cell surface. Using a panel of compounds to screen for their ability to block Env-induced neurotoxicity, we found that several compounds were protective and are linked to the ß1 integrin pathway. INTERPRETATION: HERV-K Env is released extracellularly in ALS and causes neurotoxicity via a novel mechanism. Present results pave the way for new treatment strategies in sporadic ALS. ANN NEUROL 2022;92:545-561.


Subject(s)
Amyotrophic Lateral Sclerosis , Endogenous Retroviruses , Amyotrophic Lateral Sclerosis/genetics , Animals , Gene Products, env , Humans , Integrin beta1 , Mice , Mice, Transgenic
14.
Opt Express ; 31(18): 29187-29195, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710724

ABSTRACT

Dimerization reactions play a critical role in various fields of research, including cell biology, biomedicine, and chemistry. In particular, the dimerization reaction of 2NO2⇌N2O4 has been extensively applied in pollution control and raw material preparation. Spectroscopy, as a powerful tool for investigating molecular structures and reaction kinetics, has been increasingly employed to study dimerization reactions in recent years. In this study, we successfully demonstrated the application of dual-comb spectroscopy (DCS) to analyze NO2 dimerization reactions, making the first report on the application of this technique in this context. Parallel measurements of NO2 and N2O4 fingerprints spectra with high resolution at 3000 cm-1 was performed, benefiting from the unprecedented broadband and high-precision capability of DCS. The absorption cross-sections of N2O4 from 296 to 343 K was obtained from the measured spectra, which contributes to further research on the molecular spectrum of N2O4. These results demonstrate the potential of DCS for studying the dimerization reaction mechanism.

15.
Opt Express ; 31(1): 514-527, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36606988

ABSTRACT

We demonstrate three typical mode-locking processes of a nonlinear amplifying loop mirror (NALM) fiber laser via a general nonlinear Schrödinger equation-based (GNLSE) simulation model. First, the pulse evolutions in the NALM cavity were separately simulated under asymmetric and weakly asymmetric conditions. We found that the splitting ratio and positions of the gain fiber can result in a suitable phase bias between clockwise and counter-clockwise beams, enabling the realization of a self-starting low-threshold operating condition. To assess the roles of the splitting ratio and gain in the mode-locking process, we simulated three pulse formation processes: in the soliton, stretched-pulse, and dissipative soliton mode-locking regimes. The simulation results show that the splitting ratio, gain, and dispersion directly influence the mode-locking condition and pulse characteristics, thereby providing effective quantified guidance for high-quality pulse generation. Finally, an experimental NALM oscillation operating under stretched pulse conditions was established to investigate the impact of the splitting ratio and pump power on the pulse characteristics. The experimental results prove that the splitting ratio, gain, and dispersion can be used to manipulate the mode-locking threshold, self-starting threshold, nonlinear effects, and pulse characteristics.

16.
Opt Lett ; 48(17): 4673-4676, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656583

ABSTRACT

This Letter presents a 0.4-5.2-µm frequency comb from a compact laser. We designed an integrated fiber device for a figure-9 laser and constructed an all-fiber laser system. The spectrum of the fiber laser was scaled to the broadband region using a chirped periodically poled lithium niobate waveguide. To use this system for gas sensing, a mid-infrared comb with a spectral range of 2.5-5.2 µm and average power of 2.1 mW was divided using an optical filter. The optical part was packaged in a 305 mm × 225 mm × 62 mm box. The comb was stabilized by locking the repetition rate and carrier-envelope offset frequency of the seed source. The system provided an ultrabroadband spectral range from 0.4 to 5.2 µm, which could be applied to spectroscopy, frequency metrology, and optical synthesizers.

17.
Opt Lett ; 48(23): 6336-6339, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039261

ABSTRACT

Due to the influence of chemical reactions, phase change, and other phenomena, the combustion system is a complicated high-temperature environment. Therefore, the spatio-temporally resolved monitoring of the temperature field is crucial for gaining a comprehensive understanding of the intricate combustion environment. In this study, we proposed a fast and high-precision temperature measurement technique based on mid-infrared (MIR) dual-comb spectroscopy with a high spectral resolution and fast refresh rate. Based on this technique, the spatio-temporally resolved measurement of a non-uniform temperature field was achieved along the laser path. To verify the capability of DCS for temperature measurement, the bandhead ro-vibrational lines of the CO2 molecule were acquired, and the 1-σ uncertainty of the retrieved temperature was 3.2°C at 800°C within 100 ms. The results demonstrate the potential of our fast and high-precision laser diagnostic technique which can be further applied to combustion kinetics.

18.
Brain ; 145(7): 2555-2568, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35788639

ABSTRACT

The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.


Subject(s)
COVID-19 , Nervous System Diseases , Adult , Antigen-Antibody Complex , Complement Activation , Endothelial Cells , Humans , Inflammation , SARS-CoV-2
19.
Proc Natl Acad Sci U S A ; 117(50): 31800-31807, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33257569

ABSTRACT

The three members of the endocrine-fibroblast growth factor (FGF) family, FGF19, 21, and 23 are circulating hormones that regulate critical metabolic processes. FGF23 stimulates the assembly of a signaling complex composed of α-Klotho (KLA) and FGF receptor (FGFR) resulting in kinase activation, regulation of phosphate homeostasis, and vitamin D levels. Here we report that the C-terminal tail of FGF23, a region responsible for KLA binding, contains two tandem repeats, repeat 1 (R1) and repeat 2 (R2) that function as two distinct ligands for KLA. FGF23 variants with a single KLA binding site, FGF23-R1, FGF23-R2, or FGF23-wild type (WT) with both R1 and R2, bind to KLA with similar binding affinity and stimulate FGFR1 activation and MAPK response. R2 is flanked by two cysteines that form a disulfide bridge in FGF23-WT; disulfide bridge formation in FGF23-WT is dispensable for KLA binding and for cell signaling via FGFRs. We show that FGF23-WT stimulates dimerization and activation of a chimeric receptor molecule composed of the extracellular domain of KLA fused to the cytoplasmic domain of FGFR and employ total internal reflection fluorescence microscopy to visualize individual KLA molecules on the cell surface. These experiments demonstrate that FGF23-WT can act as a bivalent ligand of KLA in the cell membrane. Finally, an engineered Fc-R2 protein acts as an FGF23 antagonist offering new pharmacological intervention for treating diseases caused by excessive FGF23 abundance or activity.


Subject(s)
Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Protein Multimerization/physiology , Binding Sites , Calcinosis/drug therapy , Calcinosis/genetics , Cell Membrane/metabolism , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/therapeutic use , HEK293 Cells , Humans , Hyperostosis, Cortical, Congenital/drug therapy , Hyperostosis, Cortical, Congenital/genetics , Hyperphosphatemia/drug therapy , Hyperphosphatemia/genetics , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/therapeutic use , Klotho Proteins , Mutation , Osteomalacia/drug therapy , Osteomalacia/genetics , Protein Binding/drug effects , Protein Binding/physiology , Protein Domains , Protein Multimerization/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/therapeutic use , Rickets, Hypophosphatemic/drug therapy , Rickets, Hypophosphatemic/genetics
20.
Proc Natl Acad Sci U S A ; 117(30): 17842-17853, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32669437

ABSTRACT

Stem cells are capable of unlimited proliferation but can be induced to form brain cells. Factors that specifically regulate human development are poorly understood. We found that human stem cells expressed high levels of the envelope protein of an endogenized human-specific retrovirus (HERV-K, HML-2) from loci in chromosomes 12 and 19. The envelope protein was expressed on the cell membrane of the stem cells and was critical in maintaining the stemness via interactions with CD98HC, leading to triggering of human-specific signaling pathways involving mammalian target of rapamycin (mTOR) and lysophosphatidylcholine acyltransferase (LPCAT1)-mediated epigenetic changes. Down-regulation or epigenetic silencing of HML-2 env resulted in dissociation of the stem cell colonies and enhanced differentiation along neuronal pathways. Thus HML-2 regulation is critical for human embryonic and neurodevelopment, while it's dysregulation may play a role in tumorigenesis and neurodegeneration.


Subject(s)
Cell Differentiation , Endogenous Retroviruses/physiology , Neurons/metabolism , Signal Transduction , Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Biomarkers , Cell Differentiation/genetics , Cell Self Renewal/genetics , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Gene Expression Regulation, Viral , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Protein Binding , Stem Cells/cytology , Transcription Factors/genetics , Transcription Factors/metabolism , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL