Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842926

ABSTRACT

Two-dimensional (2D) Fe3Sn2, which is a room-temperature ferromagnetic kagome metal, has potential applications in spintronic devices. However, the systematic synthesis and magnetic study of 2D Fe3Sn2 single crystals have rarely been reported. Here we have synthesized 2D hexagonal and triangular Fe3Sn2 nanosheets by controlling the amount of FeCl2 precursors in the chemical vapor deposition (CVD) method. It is found that the hexagonal Fe3Sn2 nanosheets exist with Fe vacancy defects and show no obvious coercivity. While the triangular Fe3Sn2 nanosheet has obvious hysteresis loops at room temperature, its coercivity first increases and then remains stable with an increase in temperature, which should result from the competition of the thermal activation mechanism and spin direction rotation mechanism. A first-principles calculation study shows that the Fe vacancy defects in Fe3Sn2 can increase the distances between Fe atoms and weaken the ferromagnetism of Fe3Sn2. The resulting 2D Fe3Sn2 nanosheets provide a new choice for spintronic devices.

2.
Molecules ; 29(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39202795

ABSTRACT

Significant interest has emerged for the application of Pd-In2O3 catalysts as high-performance catalysts for CO2 hydrogenation to CH3OH. However, precise active site control in these catalysts and understanding their reaction mechanisms remain major challenges. In this investigation, a series of Pd-InOx catalysts were synthesized, revealing three distinct types of active sites: In-O, Pd-O(H)-In, and Pd2In3. Lower Pd loadings exhibited Pd-O(H)-In sites, while higher loadings resulted in Pd2In3 intermetallic compounds. These variations impacted catalytic performance, with Pd-O(H)-In catalysts showing heightened activity at lower temperatures due to the enhanced CO2 adsorption and H2 activation, and Pd2In3 catalysts performing better at elevated temperatures due to the further enhanced H2 activation. In situ DRIFTS studies revealed an alteration in key intermediates from *HCOO over In-O bonds to *COOH over Pd-O(H)-In and Pd2In3 sites, leading to a shift in the main reaction pathway transition and product distribution. Our findings underscore the importance of active site engineering for optimizing catalytic performance and offer valuable insights for the rational design of efficient CO2 conversion catalysts.

3.
J Sci Food Agric ; 104(1): 196-206, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37555248

ABSTRACT

BACKGROUND: Schisandra chinensis (Turcz.) Baill, a fruit utilized in traditional Chinese medicine (TCM), has a long history of medical application. It has been used to treat diseases of the gastrointestinal tract. Schisandra chinensis (Turcz.) Baill polysaccharide (SACP) is an important biologically active ingredient that has been shown to have a variety of beneficial effects including immune regulation and anti-oxidative properties. Ulcerative colitis (UC) is a complicated gastrointestinal inflammatory disease. We explore the protective effect of SACP against UC. RESULTS: Schisandra chinensis (Turcz.) Baill polysaccharide significantly reduced the disease activity index (DAI) and levels of myeloperoxidase(MPO) and malondialdehyde (MDA) in colonic tissue. It also alleviated weight loss and histopathological damage of mice. The expression of MUC2 and occludin proteins was increased and the barrier function of the colonic mucosa was enhanced by SACP treatment. NF-κB pathway activation was also inhibited and the production of pro-inflammatory cytokines was decreased whereas anti-inflammatory cytokines were increased. 16SrDNA sequencing of fecal flora showed that SACP increased the abundance of Muribaculaceaeunclassified, LachnospiraceaeNK4A136group and reduced the abundance of Bacteroides and Erysipelatoclostridium. CONCLUSION: Schisandra chinensis (Turcz.) Baill polysaccharide can protect against Dextran Sulfate Sodium Salt (DSS)-induced ulcerative colitis in mice. © 2023 Society of Chemical Industry.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Schisandra , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NF-kappa B/genetics , NF-kappa B/metabolism , Schisandra/chemistry , Schisandra/metabolism , Polysaccharides , Colon/metabolism , Cytokines/metabolism , Sodium Chloride , Dextran Sulfate/adverse effects , Disease Models, Animal
4.
Small ; 18(3): e2104293, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34738716

ABSTRACT

Antimony sulfide is attracting enormous attention due to its remarkable theoretical capacity as anode for sodium-ion batteries (SIBs). However, it still suffers from poor structural stability and sluggish reaction kinetics. Constructing covalent chemical linkage to anchor antimony sulfide on two-dimension conductive materials is an effective strategy to conquer the challenges. Herein, Ti3 C2 -Sb2 S3 composites are successfully achieved with monodispersed Sb2S3 uniformly pinned on the surface of Ti3 C2 Tx MXene through covalent bonding of Ti-O-Sb and S-Ti. Ti3 C2 Tx MXene serves as both charge storage contributor and flexible conductive buffer to sustain the structural integrity of the electrode. Systematic analysis indicates that construction of efficient interfacial chemical linkage could bridge the physical gap between Sb2S3 nanoparticles and Ti3 C2 Tx MXene, thus promoting the interfacial charge transfer efficiency. Furthermore, the interfacial covalent bonding could also effectively confine Sb2S3 nanoparticles and the corresponding reduced products on the surface of Ti3 C2 Tx MXene. Benefited from the unique structure, Ti3 C2 -Sb2 S3 anode delivers a high reversible capacity of 475 mAh g-1 at 0.2 A g-1 after 300 cycles, even retaining 410 mAh g-1 at 1.0 A g-1 after 500 cycles. This strategy is expected to shed more light on interfacial chemical linkage towards rational design of advanced materials for SIBs.

5.
Small ; 18(42): e2203545, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36149033

ABSTRACT

Exploration of advanced carbon anode material is the key to circumventing the sluggish kinetics and poor rate capability for potassium ion storage. Herein, a synergistic synthetic strategy of engineering both surface and structure is adopted to design N, S co-doped carbon nanotubes (NS-CNTs). The as-designed NS-CNTs exhibit unique features of defective carbon surface, hollow tubular channel, and enlarged interlayer space. These features significantly contribute to a large potassium storage capacity of 307 mA h g-1 at 1 A g-1 and a remarkable rate performance with a capacity of 151 mA h g-1 even at 5 A g-1 . Furthermore, an excellent cyclability with 98% capacity retention after 500 cycles at 2 A g-1 is also achieved. Systematic analysis by in situ Raman spectroscopy and ex situ TEM demonstrates the structural stability and reversibility in the charge-discharge process. Although the kinetics studies reveal the capacitive-dominated process for potassium storage, density functional theory calculations provide evidence that N, S co-doping contributes to expanding the interlayer space to promote the K-ion insertion, improving the electronic conductivity, and providing ample defective sites to favor the K-ion adsorption.

6.
J Acoust Soc Am ; 150(1): 410, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34340466

ABSTRACT

The membrane sound absorber (MSA) with a compact magnet has exhibited excellent tunable properties for low-frequency sound absorption. To further clarify its acoustic properties, this paper presents a theoretical model based on a multi-mechanism coupling impedance method. The model predicts the absorption coefficients and resonant frequencies of the MSA at different tuning magnetic states for three cavity configurations. These parameters are then experimentally measured using an impedance tube for model validation, demonstrating good agreement between the measured and predicted values. Subsequent analysis reveals the iron-platelet-magnet resonance mechanism introduced by the tuned magnetic field is the main factor behind the appearance and shift of absorption peaks in the low-frequency region, which are mostly independent of the back cavity. In other words, the MSA with a back cavity of any size can achieve sound absorption in the low-frequency region. This demonstrates the potential of the structure in achieving an ultra-thin, low-frequency, tunable sound-absorber design that can be adapted to different noise sources.

7.
Angew Chem Int Ed Engl ; 60(39): 21512-21520, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34309972

ABSTRACT

One of the major challenges regarding the sulfur cathode of Li-S batteries is to achieve high sulfur loading, fast Li ions transfer, and the suppression of lithium polysulfides (LiPSs) shuttling. This issue can be solved by the development of molybdenum carbide decorated N-doped carbon hierarchical double-shelled hollow spheres (Mo2 C/C HDS-HSs). The mesoporous thick inner shell and the central void of the HDS-HSs achieve high sulfur loading, facilitate the ion/electrolyte penetration, and accelerate charge transfer. The microporous thin outer shell suppresses LiPSs shuttling and reduces the charge/mass diffusion distance. The double-shelled hollow structure accommodates the volume expansion during lithiation. Furthermore, Mo2 C/C composition renders the HDS-HSs cathode with improved conductivity, enhanced affinity to LiPSs, and accelerated kinetics of LiPSs conversion. The structural and compositional advantages render the Mo2 C/C/S HDS-HSs electrode with high specific capacity, excellent rate capability, and ultra-long cycling stability in the composed Li-S batteries.

8.
Appl Microbiol Biotechnol ; 104(23): 10165-10179, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33044599

ABSTRACT

Due to the high mortality rate and an increase in breast cancer incidence, it has been challenging for researchers to come across an effective chemotherapeutic strategy with minimum side effects. Therefore, the need for the development of effective chemotherapeutic drugs is still on the verge. Consequently, we approached a new mechanism to address this issue. The naturally available peptide named latcripin-7A (LP-7A), extracted from a mushroom called Lentinula edodes, provided us promising results in terms of growth arrest, apoptosis, and autophagy in breast cancer cells (MCF-7 and MDA-MB-231). Expressions of protein markers for apoptosis, autophagy, and cell cycle were confirmed via Western blot analysis. Migration and invasion assays were performed to analyze the anti-migratory and anti-invasive properties of LP-7A, while cell cycle analysis was performed via flow cytometry to evaluate its affect over cell growth. Supportive assays were performed like acridine orange, Hoechst 33258 stain, DNA fragmentation, and mitochondrial membrane potential (MMP) to further confirm the anticancer effect of LP-7A on breast cancer cell lines. It is concluded that LP-7A effectively reduces migration and promotes apoptosis as well as autophagy in MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell growth arrest at G0/G1 phase and decreasing mitochondrial membrane potential without adverse effects on MCF-10A normal breast cells. KEY POINTS: • In this study, we have investigated the anti-cancer activity of novel latcripin-7A (LP-7A), a protein extracted as a result of de novo characterization of Lentinula edodes C91-3. • We conclude in our research work that LP-7A can initiate diverse cell death-related events, i.e., apoptosis and autophagy in both triple-positive and triple-negative breast cancer cell lines by interacting with different nodes of cellular signaling that can further be investigated in vivo to gain a better understanding.


Subject(s)
Breast Neoplasms , Shiitake Mushrooms , Apoptosis , Autophagy , Breast Neoplasms/drug therapy , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Humans , Peptides
9.
Angew Chem Int Ed Engl ; 59(47): 21106-21113, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32767438

ABSTRACT

Water electrolysis offers a promising green technology to tackle the global energy and environmental crisis, but its efficiency is greatly limited by the sluggish reaction kinetics of both the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). In this work, by growing amorphous multi-transition-metal (cobalt and iron) oxide on two-dimensional (2D) black phosphorus (BP), we develop a bifunctional electrocatalyst (CoFeO@BP), which is able to efficiently catalyze both HER and OER. The overpotentials for the hybrid CoFeO@BP catalyst to reach a current density of 10 mA cm-2 in 1 m KOH are 88 and 266 mV for HER and OER, respectively. Based on a series of ex-situ and in situ investigations, the excellent catalytic performance of CoFeO@BP is found to result from the adaptive surface structure under reduction and oxidation potentials. CoFeO@BP can be transformed to CoFe phosphide under reduction potential, in situ generating the real active catalyst for HER.

10.
Article in English | MEDLINE | ID: mdl-31209008

ABSTRACT

The novel 12,932-bp nonconjugative multiresistance transposon Tn6674 was identified in the chromosomal DNA of a porcine Enterococcus faecalis strain. Tn6674 belongs to the Tn554 family of transposons. It shares the same arrangement of the transposase genes tnpA, tnpB, and tnpC with Tn554 However, in addition to the Tn554-associated resistance genes spc and erm(A), Tn6674 harbored the resistance genes fexA and optrA Circular forms of Tn6674 were detected and suggest the functional activity of this transposon.


Subject(s)
DNA Transposable Elements/genetics , Enterococcus/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterococcus/drug effects , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Oxazolidinones/pharmacology , Sequence Analysis, DNA , Transposases/genetics , Transposases/metabolism
11.
Opt Express ; 26(22): 29471-29481, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470110

ABSTRACT

We report two-photon interferences on a silica-on-silicon chip of Mach-Zehnder interferometer using telecommunication-band correlated photon pairs. The photon pairs were generated by spontaneous four-waving mixing process in a dispersion-shifted fiber. The integrated chip, which was fabricated by standard silica-on-silicon planar lightwave circuit technology, contained a Mach-Zehnder interferometer with a thermo-optic phase shifter. The insertion loss of the interferometer was less than 1 dB. We demonstrated two-photon interferences with both degenerate- and non-degenerate-frequency photon pairs on the Mach-Zehnder interferometer chip. A high fringe visibility was achieved in the interference with nondegenerate-frequency photons. Properties of quantum interference were demonstrated in the interference with degenerate-frequency photon pairs, which is an important way to manipulate the quantum state. These results show great potential of silica-on-silicon photonic chips in applications for the fiber-chip scheme in quantum networks.

12.
Med Sci Monit ; 23: 5446-5454, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29142190

ABSTRACT

BACKGROUND The purpose of the study was to investigate the ability of microbubbles (MBs) targeting interleukin-18 (IL-18) to detect plaques in a rabbit atherosclerotic plaque model. MATERIAL AND METHODS A rabbit atherosclerotic plaque model was established. The locations of the atherosclerotic plaques were verified by two-dimensional scanning and color Doppler flow imaging. An IL-18 antibody was conjugated to naked MBs (MBc) using the biotin-streptavidin conjugation method, resulting in the formation of MBIL-18. MBc and MBIL-18 were then used for contrast-enhanced ultrasound (CEUS) studies. The locations of CD34 and IL-18 within the plaques were determined by immunohistochemistry, and IL-18 expression levels in the plaques were determined by Western blot analysis. The relationships between IL-18 expression and the contrast intensity of the 2 MBs were analyzed. RESULTS MBc and MBIL-18 were both uniformly dispersed. Fluorescence microscopy and flow cytometry revealed that IL-18 was successfully conjugated to MBs. CEUS images showed that the intensity of the MBIL-18 signal was substantially enhanced and prolonged compared with that of the MBc signal. Immunohistochemistry showed that CD34 expression was significantly increased in the plaques and that IL-18 was mainly located in the inner parts and base of the atherosclerotic plaques. Western blot analysis revealed that IL-18 expression was higher in the plaque regions. Correlation analysis showed that IL-18 expression was correlated with the contrast intensity of MBIL-18 (r=0.903, P<0.05) but not with MBc (r=0.540, P>0.05). CONCLUSIONS MBs targeting IL-18 may be a novel, noninvasive method of diagnosing atherosclerotic plaques.


Subject(s)
Plaque, Atherosclerotic/diagnostic imaging , Ultrasonography, Doppler, Color/methods , Animals , Antibodies , Antigens, CD34/analysis , Aorta/diagnostic imaging , Contrast Media , Immunohistochemistry , Interleukin-18/metabolism , Microbubbles , Neovascularization, Pathologic/metabolism , Plaque, Atherosclerotic/metabolism , Rabbits , Ultrasonography/methods
13.
Comput Biol Med ; 168: 107805, 2024 01.
Article in English | MEDLINE | ID: mdl-38064845

ABSTRACT

Depression is a prevalent mental disorder worldwide. Early screening and treatment are crucial in preventing the progression of the illness. Existing emotion-based depression recognition methods primarily rely on facial expressions, while body expressions as a means of emotional expression have been overlooked. To aid in the identification of depression, we recruited 156 participants for an emotional stimulation experiment, gathering data on facial and body expressions. Our analysis revealed notable distinctions in facial and body expressions between the case group and the control group and a synergistic relationship between these variables. Hence, we propose a two-stream feature fusion model (TSFFM) that integrates facial and body features. The central component of TSFFM is the Fusion and Extraction (FE) module. In contrast to conventional methods such as feature concatenation and decision fusion, our approach, FE, places a greater emphasis on in-depth analysis during the feature extraction and fusion processes. Firstly, within FE, we carry out local enhancement of facial and body features, employing an embedded attention mechanism, eliminating the need for original image segmentation and the use of multiple feature extractors. Secondly, FE conducts the extraction of temporal features to better capture the dynamic aspects of expression patterns. Finally, we retain and fuse informative data from different temporal and spatial features to support the ultimate decision. TSFFM achieves an Accuracy and F1-score of 0.896 and 0.896 on the depression emotional stimulus dataset, respectively. On the AVEC2014 dataset, TSFFM achieves MAE and RMSE values of 5.749 and 7.909, respectively. Furthermore, TSFFM has undergone testing on additional public datasets to showcase the effectiveness of the FE module.


Subject(s)
Depression , Rivers , Humans , Depression/psychology , Emotions/physiology , Face , Facial Expression
14.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38869532

ABSTRACT

Defect manipulation in metal oxide is of great importance in boosting catalytic performance for propane oxidation. Herein, a selective atom removal strategy was developed to construct a defective manganese oxide catalyst, which involved the partial etching of a Mg dopant in MnOx. The resulting MgMnOx-H catalysts exhibited superior low-temperature catalytic activity (T50 = 185 °C, T90 = 226 °C) with a propane conversion rate of 0.29 µmol·gcat.-1·h-1 for the propane oxidation reaction, which is 4.8 times that of pristine MnOx. Meanwhile, a robust hydrothermal stability was guaranteed at 250 °C for 30 h of reaction time. The comprehensive experimental characterizations revealed that the catalytic performance improvement was closely related to the defective structures including the abundant (metal and oxygen) vacancies, distorted crystals, valence imbalance, etc., which prominently weakened the Mn-O bond and stimulated the mobility of surface lattice oxygen, leading to the elevation in the intrinsic oxidation activity. This work exemplifies the significance of defect engineering for the promotion of the oxidation ability of metal oxide, which will be valuable for the further development of efficient non-noble metal catalysts for propane oxidation.

15.
Sci Adv ; 10(25): eadn2707, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896618

ABSTRACT

Nanoconfined catalysts enhance stabilization of reaction intermediates, facilitate electron transfer, and safeguard active centers, leading to superior electrocatalytic activity, particularly in CO2 reduction reactions (CO2RR). Despite their effectiveness, crafting nanoconfined catalysts is challenging due to unclear formation mechanisms. In this study, we introduce an electrochemical method to grow Pd clusters within the interlayers of two-dimensional black phosphorus, creating Pd cluster-intercalated black phosphorus (Pd-i-BP) as an electrocatalyst. Using in situ electrochemical liquid phase transmission electron microscopy (EC-TEM), we revealed the synthesis mechanism of Pd-i-BP, involving electrochemically driven Pd ion intercalation followed by reduction within the BP layers. The Pd-i-BP electrocatalyst exhibits exemplary CO2-to-formate conversion, achieving 90% Faradaic efficiency for formate production, owing to its distinct nanoconfined structure that stabilizes intermediates and enhances electron transfer. Density functional theory (DFT) calculations underscore the structural benefits for enhancing intermediate adsorption and catalyzing the reaction. Our insights deepen understanding of nanoconfined material synthesis, promising advanced, high-efficiency catalysts.

16.
Chemosphere ; 364: 143189, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39191348

ABSTRACT

Innovative agricultural strategies are essential for addressing the urgent challenge of food security in light of climate change, population growth, and various environmental stressors. Cytokinins (CKs) play a pivotal role in enhancing plant resilience and productivity. These compounds, which include isoprenoid and aromatic types, are synthesized through pathways involving key enzymes such as isopentenyl transferase and cytokinin oxidase. Under abiotic stress conditions, CKs regulate critical physiological processes by improving photosynthetic efficiency, enhancing antioxidant enzyme activity, and optimizing root architecture. They also reduce the levels of reactive oxygen species and malondialdehyde, resulting in improved plant performance and yield. CKs interact intricately with other phytohormones, including abscisic acid, ethylene, salicylic acid, and jasmonic acid, to modulate stress-responsive pathways. This hormonal cross-talk is vital for finely tuning plant responses to stress. Additionally, CKs influence nutrient uptake and enhance responses to heavy metal stress, thereby bolstering overall plant resilience. The application of CKs helps plants maintain higher chlorophyll levels, boost antioxidant systems, and promote root and shoot growth. The strategic utilization of CKs presents an adaptive approach for developing robust crops capable of withstanding diverse environmental stressors, thus contributing to sustainable agricultural practices and global food security. Ongoing research into the mechanisms of CK action and their interactions with other hormones is essential for maximizing their agricultural potential. This underscores the necessity for continued innovation and research in agricultural practices, in alignment with global goals of sustainable productivity and food security.

17.
Mater Horiz ; 11(8): 2032-2040, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38372566

ABSTRACT

Exploration of high-performance catalysts holds great importance for on-demand H2 production from ammonia borane (AB) hydrolysis. In this work, a hollow bowl-like porous carbon-anchored Ru-MgO hetero-structured nano-pair with high-intensity interfaces is made, using a tailored design approach. Consequently, the optimized catalyst shows AB hydrolysis activity with a turnover frequency value of 784 min-1 in aqueous media and 1971 min-1 in alkaline solvent. Robust durability is also achieved, with slight deactivation after a ten-cycle test. Combined experimental and theoretical calculations validate the positive function of the interface between Ru and MgO for facilitating H transfer and boosting water activation, thus leading to improved AB hydrolysis performance. This study could be valuable in guiding the upgradation of Ru catalytic systems, to advance their practical applications.

18.
World J Psychiatry ; 14(2): 225-233, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464777

ABSTRACT

Depression is a common mental health disorder. With current depression detection methods, specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment. Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized. Specialized physicians usually require extensive training and experience to capture changes in these features. Advancements in deep learning technology have provided technical support for capturing non-biological markers. Several researchers have proposed automatic depression estimation (ADE) systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening. This article summarizes commonly used public datasets and recent research on audio- and video-based ADE based on three perspectives: Datasets, deficiencies in existing research, and future development directions.

19.
Biochem Biophys Res Commun ; 431(1): 111-5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23266612

ABSTRACT

Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom.


Subject(s)
Genome, Fungal/genetics , Shiitake Mushrooms/genetics , Transcriptome , Genomics , High-Throughput Nucleotide Sequencing/methods
20.
J Hazard Mater ; 452: 131319, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37004446

ABSTRACT

Defects engineering in metal oxide is an important avenue for the promotion of VOCs catalytic oxidation. Herein, the influence of crystal facet of Co3O4 is first investigated for the propane oxidation. An intelligent Cu doping is subsequently performed in the most active (110) facet exposed Co3O4 catalyst. The optimized Cu-Co3O4-110-3 catalyst exhibits a prominently enhanced activity with propane conversion rate of 1.9 µmol g-1 s-1 at reaction temperature of 192 °C and the propane mass space velocity of 60,000 mL g-1 h-1, about 2.4 times that of the pristine Co3O4. Systematic experimental characterizations (XAS, EPR, Raman, TPR, XPS, etc.) combined with density functional theory calculations point out that the incorporated Cu could increase the electrophilicity of nearby O atom and implant beneficial defect structures (lattice distortion, coordination unsaturation, abundant oxygen vacancies, etc.), which could significantly activate Co-O bond in Co3O4, leading to the facilitated generation of active oxygen species as well as promoted oxidation ability. This study could set an illuminating paradigm for the boost of the intrinsic oxidation activity by the precise defect construction in Co3O4 catalyst, which will help drive ahead the pursuit of non-precious metal catalyst for VOCs abatement.

SELECTION OF CITATIONS
SEARCH DETAIL