Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(1): e2215126120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574691

ABSTRACT

Mec1 is a DNA damage sensor, which performs an essential role in the DNA damage response pathway and glucose starvation-induced autophagy. However, the functions of Mec1 in autophagy remain unclear. In response to glucose starvation, Mec1 forms puncta, which are recruited to mitochondria through the adaptor protein Ggc1. Here, we show that Mec1 puncta also contact the phagophore assembly site (PAS) via direct binding with Atg13. Functional analysis of the Atg13-Mec1 interaction revealed two previously unrecognized protein regions, the Mec1-Binding Region (MBR) on Atg13 and the Atg13-Binding Region (ABR) on Mec1, which mediate their mutual association under glucose starvation conditions. Disruption of the MBR or ABR impairs the recruitment of Mec1 puncta and Atg13 to the PAS, consequently blocking glucose starvation-induced autophagy. Additionally, the MBR and ABR regions are also crucial for DNA damage-induced autophagy. We thus propose that Mec1 regulates glucose starvation-induced autophagy by controlling Atg13 recruitment to the PAS.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Protein Kinases/metabolism , Glucose/metabolism , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
2.
J Nutr ; 154(4): 1309-1320, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417550

ABSTRACT

BACKGROUND: Obesity caused by the overconsumption of energy-dense foods high in fat and sugar has contributed to the growing prevalence of type 2 diabetes. Betaine, found in food or supplements, has been found to lower blood glucose concentrations, but its exact mechanism of action is not well understood. OBJECTIVES: A comprehensive evaluation of the potential mechanisms by which betaine supplementation improves glucose metabolism. METHODS: Hyperglycemic mice were fed betaine to measure the indexes of glucose metabolism in the liver and muscle. To explore the mechanism behind the regulation of betaine on glucose metabolism, Ribonucleic Acid-Seq was used to analyze the livers of the mice. In vitro, HepG2 and C2C12 cells were treated with betaine to more comprehensively evaluate the effect of betaine on glucose metabolism. RESULTS: Betaine was added to the drinking water of high-fat diet-induced mice, and it was found to reduce blood glucose concentrations and liver triglyceride concentrations without affecting body weight, confirming its hypoglycemic effect. To investigate the specific mechanism underlying its hypoglycemic effect, protein-protein interaction enrichment analysis of the liver revealed key nodes associated with glucose metabolism, including cytochrome P450 family activity, insulin sensitivity, glucose homeostasis, and triglyceride concentrations. The Kyoto Encyclopedia of Genes and Genomes and gene ontogeny enrichment analyses showed significant enrichment of the Notch signaling pathway. These results provided bioinformatic evidence for specific pathways through which betaine regulates glucose metabolism. Key enzyme activities involved in glucose uptake, glycogen synthesis, and glycogenolysis pathways of the liver and muscle were measured, and improvements were observed in these pathways. CONCLUSIONS: This study provides new insight into the mechanisms by which betaine improves glucose metabolism in the liver and muscle and supports its potential as a drug for the treatment of metabolic disorders related to glucose.


Subject(s)
Betaine , Diabetes Mellitus, Type 2 , Mice , Animals , Betaine/metabolism , Mice, Obese , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Triglycerides , Diet, High-Fat/adverse effects , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Mice, Inbred C57BL , Glucose/metabolism , Lipid Metabolism
3.
Mol Breed ; 44(3): 17, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38371313

ABSTRACT

Heading date is one of the important agronomic traits that affects rice yield. In this study, we cloned a new rice B3 family gene, OsL1, which regulates rice heading date. Importantly, osl1-1 and osl1-2, two different types of mutants of OsL1 were created using the gene editing technology CRISPR/Cas9 system and exhibited 4 days earlier heading date than that of the wild type under short-day conditions. Subsequently, the plants overexpressing OsL1, OE-OsL1, showed a 2-day later heading date than the wild type in Changsha and a 5-day later heading date in Lingshui, but there was no significant difference in other yield traits. Moreover, the results of subcellular localization study indicated that OsL1 protein was located in the nucleus and the expression pattern analysis showed that OsL1 gene was expressed in rice roots, stems, leaves, and panicles, and the expression level was higher at the root and weak green panicle. In addition, the OsL1 gene was mainly expressed at night time under short-light conditions. The transcriptomic analysis indicated that OsL1 might be involved in the Hd1-Hd3a pathway function. Together, our results revealed that the cloning and functional analysis of OsL1 can provide new strategy for molecular design breeding of rice with suitable fertility period. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01444-1.

4.
Phytother Res ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685750

ABSTRACT

The escalating incidence of nonalcoholic fatty liver disease (NAFLD) is closely associated with a high-fat diet, leading to a decline in quality of life and significant health impairment. 7-Hydroxyflavone (7-HY) is a flavonoid known for its anti-inflammatory, anticarcinogenic, and antioxidant effects. This study aims to assess the ameliorative effects of 7-HY on NAFLD induced by a high-fat diet and elucidate underlying mechanisms. Oleic acid/palmitic acid-induced HepG2 cells and C57BL/6 mice on a high-fat diet were utilized as in vitro and in vivo models. In animal experiments, 7-HY was utilized as a dietary supplement. The 15-week in vivo experiment monitored body weight, body fat percentage, glucose tolerance, insulin tolerance, and metabolic indexes. Commercial kits assessed triglyceride (TG) and total cholesterol levels in cells, liver tissue, and blood. Discovery Studio identified potential targets of 7-HY, compared with NAFLD-associated targets in the GeneCards database. Results indicated 7-HY mitigated fat accumulation, hepatic steatosis, and oxidative stress induced by a high-fat diet. Furthermore, 7-HY showed potential efficacy in ameliorating abnormal glucose metabolism and promoting energy metabolism. Reverse target finding and molecular docking demonstrated a robust interaction between 7-HY and serine/threonine kinase 24 (STK24). Subsequent experimental results confirmed 7-HY's ability to inhibit TG deposition in HepG2 cells through interaction with STK24. In conclusion, 7-HY demonstrated the capacity to alleviate high-fat diet-induced NAFLD, presenting a novel strategy for the prevention and treatment of NAFLD.

5.
Angew Chem Int Ed Engl ; 63(8): e202317148, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38169131

ABSTRACT

Stabilizing electrolytes for high-voltage lithium metal batteries (LMBs) is crucial yet challenging, as they need to ensure stability against both Li anodes and high-voltage cathodes (above 4.5 V versus Li/Li+ ), addressing issues like poor cycling and thermal runaway. Herein, a novel gem-difluorinated skeleton of ionic liquid (IL) is designed and synthesized, and its non-flammable electrolytes successfully overcome aforementioned challenges. By creatively using dual salts, fluorinated ionic liquid and dimethyl carbonate as a co-solvent, the solvation structure of Li+ ions is efficiently controlled through electrostatic and weak interactions that are well unveiled and illuminated via nuclear magnetic resonance spectra. The as-prepared electrolytes exhibit high security avoiding thermal runaway and show excellent compatibility with high-voltage cathodes. Besides, the solvation structure derives a robust and stable F-rich interphase, resulting in high reversibility and Li-dendrite prevention. LiNi0.6 Co0.2 Mn0.2 O2 /Li LMBs (4.5 V) demonstrate excellent long-term stability with a high average Coulombic efficiency (CE) of at least 99.99 % and a good capacity retention of 90.4 % over 300 cycles, even can work at a higher voltage of 4.7 V. Furthermore, the ultrahigh Ni-rich LiNi0.88 Co0.09 Mn0.03 O2 /Li system also delivers excellent electrochemical performance, highlighting the significance of fluorinated IL-based electrolyte design and enhanced interphasial chemistry in improving battery performance.

6.
J Med Virol ; 95(5): e28782, 2023 05.
Article in English | MEDLINE | ID: mdl-37212323

ABSTRACT

Mainland China included Japanese encephalitis (JE) vaccine in the national immunization program in 2008 to control the JE epidemic. However, Gansu province in Western China experienced the largest JE outbreak since 1958 in 2018. We conducted a retrospective epidemiological study to explore the causes of this outbreak. We found that adults aged ≥20 years (especially those in rural areas) were the main JE cases in Gansu Province, with a significant increase in the JE incidence in older adults aged ≥60 years in 2017 and 2018. In addition, JE outbreaks in Gansu Province were mainly located in the southeastern region, while the temperature and precipitation in Gansu Province were gradually increasing in recent years, which made the JE epidemic areas in Gansu Province gradually spread to the western of Gansu Province. We also found that adults aged ≥20 years in Gansu Province had lower JE antibody positivity than children and infants, and the antibody positivity rate decreased with age. In the summer of 2017 and 2018, the density of mosquitoes (mainly the Culex tritaeniorhynchus) in Gansu Province was significantly higher than in other years, and the genotype of JEV was mainly Genotype-G1. Therefore, in the future JE control in Gansu Province, we need to strengthen JE vaccination for adults. Moreover, strengthening mosquito surveillance can provide early warning of JE outbreaks and the spread of epidemic areas in Gansu Province. At the same time, strengthening JE antibody surveillance is also necessary for JE control.


Subject(s)
Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Japanese Encephalitis Vaccines , Child , Infant , Animals , Humans , Aged , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/prevention & control , Encephalitis Virus, Japanese/genetics , Retrospective Studies , Vaccination , Disease Outbreaks , China/epidemiology
7.
Value Health ; 26(5): 666-675, 2023 05.
Article in English | MEDLINE | ID: mdl-36328326

ABSTRACT

OBJECTIVES: This study aimed to evaluate the health and economic impact of diphtheria, tetanus, whole-cell pertussis vaccine (DTwP) and diphtheria-tetanus-acellular pertussis vaccine (DTaP) vaccination on pertussis prevention and control in China during the 40 years from 1978 to 2017. METHODS: We conducted cost-benefit analyses with a decision tree model populated with historical vaccination coverage levels and pertussis incidence and mortality data from before 1978 and during 1978 to 2017. We modeled 40 birth cohorts from birth until death. Costs and benefits were estimated from direct cost and societal perspectives (direct and indirect costs). Costs and benefits were adjusted to 2017 US dollars (USD), and future values were discounted at a 3% annual rate. We calculated net benefit values (net savings) and benefit-cost ratios of pertussis vaccination of children younger than 5 years. We conducted sensitivity analyses by varying key parameters within plausible ranges. RESULTS: Without DTwP and DTaP vaccination, there would be an estimated 115.76 million pertussis cases and 426 650 pertussis deaths in the 40 cohorts. With DTwP/DTaP vaccination, pertussis cases and deaths were decreased by an estimated 92.57% and 97.43%, saving 46 987.81 million USD in direct costs and 82 013.37 million USD from societal perspective. Pertussis vaccination program costs were 2168.76 million USD and 3961.28 million USD from direct cost and societal perspectives. Benefit-cost ratios were 21.67:1 from the direct cost perspective and 20.70:1 from the societal perspective. Sensitivity analyses showed the results to be robust. CONCLUSIONS: Over the lifetime of 40 birth cohorts, China's immunization program is preventing 93% of pertussis cases and 97% of pertussis deaths, resulting in substantial savings to the healthcare system and society.


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines , Whooping Cough , Child , Humans , Whooping Cough/epidemiology , Whooping Cough/prevention & control , Cost-Benefit Analysis , Vaccination , China/epidemiology
8.
Phytother Res ; 37(8): 3617-3630, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37092723

ABSTRACT

Long-term high-fat diet (HFD) will lead to obesity and their complications. Echinocystic acid (EA), a triterpene, shows anti-inflammatory and antioxidant effects. We predict that EA supplementation can prevent obesity, diabetes, and nonalcoholic steatohepatitis. To test our hypothesis, we investigated the effects of EA supplementation on mice with HFD-induced obesity in vivo and in vitro by adding EA to the diet of mice and the medium of HepG2 cells, the protein target of EA was analyzed by molecular docking. The results showed that EA ameliorated obesity and inhibited blood triglyceride and liver triglyceride concentrations than those in the HFD groups. The data on molecular docking indicated that FABP1 was a potential target of EA. Further experimental results confirmed that EA affected the triglyceride level by regulating the function of FABP1. This study may provide a new potential inhibitor for FABP1 and a new strategy for the treatment of obesity.


Subject(s)
Liver , Non-alcoholic Fatty Liver Disease , Animals , Mice , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/metabolism , Triglycerides , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Lipid Metabolism
9.
Phytother Res ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37010930

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a major health problem. However, no effective treatments are currently available. Thus, there is a critical need to develop novel drugs that can prevent and treat NAFLD with few side effects. In this study, Tussilagone (TUS), a natural sesquiterpene isolated from Tussilago farfara L, was explored in vitro and in vivo for its potential to treat NAFLD. Our results showed that in vitro TUS reduced oleic acid palmitate acid-induced triglyceride and cholesterol synthesis in HepG2 cells, reduced intracellular lipid droplet accumulation, improved glucose metabolism disorders and increased energy metabolism and reduced oxidative stress levels. In vivo, TUS significantly reduced fat accumulation and improved liver injury in high-fat diet (HFD)-induced mice. TUS treatment significantly increased liver mitochondrial counts and antioxidant levels compared to the HFD group of mice. In addition, TUS was found to reduce the expression of genes involved in lipid synthesis sterol regulatory element binding protein-1 (SREBP1), fatty acid synthase (FASN), and stearoy-CoA desaturase 1 (SCD1) in vitro and in vivo. Our results suggest that TUS may be helpful in the treatment of NAFLD, suggesting that TUS is a promising compound for the treatment of NAFLD. Our findings provided novel insights into the application of TUS in regulating lipid metabolism.

10.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003574

ABSTRACT

Pineapple color yellowing and quality promotion gradually manifest as pineapple fruit ripening progresses. To understand the molecular mechanism underlying yellowing in pineapples during ripening, coupled with alterations in fruit quality, comprehensive metabolome and transcriptome investigations were carried out. These investigations were conducted using pulp samples collected at three distinct stages of maturity: young fruit (YF), mature fruit (MF), and fully mature fruit (FMF). This study revealed a noteworthy increase in the levels of total phenols and flavones, coupled with a concurrent decline in lignin and total acid contents as the fruit transitioned from YF to FMF. Furthermore, the analysis yielded 167 differentially accumulated metabolites (DAMs) and 2194 differentially expressed genes (DEGs). Integration analysis based on DAMs and DEGs revealed that the biosynthesis of plant secondary metabolites, particularly the flavonol, flavonoid, and phenypropanoid pathways, plays a pivotal role in fruit yellowing. Additionally, RNA-seq analysis showed that structural genes, such as FLS, FNS, F3H, DFR, ANR, and GST, in the flavonoid biosynthetic pathway were upregulated, whereas the COMT, CCR, and CAD genes involved in lignin metabolism were downregulated as fruit ripening progressed. APX as well as PPO, and ACO genes related to the organic acid accumulations were upregulated and downregulated, respectively. Importantly, a comprehensive regulatory network encompassing genes that contribute to the metabolism of flavones, flavonols, lignin, and organic acids was proposed. This network sheds light on the intricate processes that underlie fruit yellowing and quality alterations. These findings enhance our understanding of the regulatory pathways governing pineapple ripening and offer valuable scientific insight into the molecular breeding of pineapples.


Subject(s)
Ananas , Flavones , Fruit/genetics , Fruit/metabolism , Transcriptome , Ananas/metabolism , Lignin/metabolism , Metabolomics , Flavonoids/metabolism , Flavones/metabolism , Gene Expression Regulation, Plant
11.
Biochem Biophys Res Commun ; 627: 52-59, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36007336

ABSTRACT

Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a common nutritional metabolic disease in poultry that seriously compromises the health of chickens and reduces the economic benefits of the industry. In this study, we investigated the therapeutic effect of mitoxantrone (MTX) on hepatic steatosis in broilers. We constructed a steatosis cell model in vitro by adding oleic acid and palmitic acid to chicken hepatocytes (LMH cells), to examine influence of MTX on fat deposition on LMH cells. To determine the effects of MTX on hepatic steatosis in broiler livers in vivo, broilers were fed a high-fat diet to establish a fatty liver model. Our data show that MTX reduced the triglyceride (TG) levels and total cholesterol levels in LMH cells. In the MAFLD chick model, MTX decreased mRNA abundance of hepatic-lipid-synthesis-related gene such as FASN and increased mRNA abundance of fatty-acid-ß-oxidation-related genes such as CPT1, PPARα, and reduced hepatic TG levels. MTX also reduced serum lipid and the percentage of abdominal fat. These results suggest that MTX improves hepatic steatosis in broilers as well as reduces circulating lipid levels and fat accumulation in broilers. Our work provides a promising therapeutic strategy for MAFLD and excessive fat accumulation in broiler chickens.


Subject(s)
Chickens , Fatty Liver , Animals , Chickens/genetics , Diet, High-Fat/adverse effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Lipid Metabolism , Lipids/pharmacology , Liver/metabolism , Mitoxantrone/pharmacology , Mitoxantrone/therapeutic use , RNA, Messenger/metabolism
12.
Biochem Biophys Res Commun ; 625: 66-74, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35952609

ABSTRACT

Lipid metabolism disorders affect the growth and jeopardize the health of poultry, thus, decreasing economic benefits. Perillartine, a sweetener derived from Perilla frutescens, has excellent potential in regulating lipid metabolism. In this study, we explored the effects of perillartine on lipid metabolism in broiler chickens by establishing a nonalcoholic fatty liver model induced by a high-fat diet. By using network pharmacology and molecular docking, we analyzed the potential molecular targets and pathways through which perillartine regulates lipid metabolism and alleviates fatty liver. Perillartine was found to regulate the expression of genes associated with lipogenesis, lipolysis, and lipid transport, including FASN, PPARα, CPT-1, ACCα, APOB, and APOA1 in the liver, and to decrease lipid accumulation in the liver and blood in broilers without affecting growth performance. In addition, we discovered 24 candidate targets of perillartine, including SRD5A2 and XDH, through network pharmacology analysis and successfully constructed a compound-target-pathway-disease network. Our results suggested that perillartine may be a promising, long-lasting therapeutic molecule for modulating lipid metabolism disorders in broilers.


Subject(s)
Chickens , Lipid Metabolism Disorders , Animals , Chickens/metabolism , Cyclohexenes , Diet , Diet, High-Fat/adverse effects , Dietary Supplements , Lipid Metabolism , Lipid Metabolism Disorders/metabolism , Lipids , Liver/metabolism , Molecular Docking Simulation , Monoterpenes , Oximes
13.
Small ; 18(4): e2107265, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34908242

ABSTRACT

Designing heterogeneous interfaces and components at the nanoscale is proven effective for optimizing electromagnetic wave absorption and shielding properties, which can achieve desirable dielectric polarization and ferromagnetic resonances. However, it remains a challenge for the precise control of components and microstructures via an efficient synthesis approach. Here, the arc-discharged plasma method is proposed to synthesize core@shell structural high-entropy-alloy@graphite nanocapsules (HEA@C-NPs), in which the HEA nanoparticles are in situ encapsulated within a few layers of graphite through the decomposition of methane. In particular, the HEA cores can be designed via combinations of various transition elements, presenting the optimized interfacial impedance matching. As an example, the FeCoNiTiMn HEA@C-NPs obtain the minimum reflection loss (RLmin ) of -33.4 dB at 7.0 GHz (3.34 mm) and the efficient absorption bandwidth (≤-10 dB) of 5.45 GHz ranging from 12.55 to 18.00 GHz with an absorber thickness of 1.9 mm. The present approach can be extended to other carbon-coated complex components systems for various applications.

14.
Plant Physiol ; 186(2): 1060-1073, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33734397

ABSTRACT

Seed setting rate is one of the critical factors that determine rice yield. Grain formation is a complex biological process, whose molecular mechanism is yet to be improved. Here we investigated the function of an OVATE family protein, Embryo Sac Development 1 (ESD1), in the regulation of seed setting rate in rice (Oryza sativa) by examining its loss-of-function mutants generated via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) technology. ESD1 was predominantly expressed at Stage 6 of panicle development, especially in the ovules. esd1 mutants displayed reduced seed setting rates with normal stamen development and pollen tube growth but abnormal pistil group. Investigation of embryo sacs revealed that during the mitosis of functional megaspores, some egg cells degraded during differentiation in esd1 mutants, thereby hindering subsequent fertilization process and reducing seed setting rate. In addition, the transcriptional level of O. sativa anaphase-promoting complex 6, a reported embryo sac developing gene, was significantly reduced in esd1 mutants. These results support that ESD1 is an important modulator of ESD and seed setting rate in rice. Together, this finding demonstrates that ESD1 positively regulates the seed setting rate by controlling ESD in rice and has implications for the improvement of rice yield.


Subject(s)
Oryza/genetics , Plant Proteins/metabolism , Flowers/embryology , Flowers/genetics , Loss of Function Mutation , Oryza/embryology , Ovule/embryology , Ovule/genetics , Plant Proteins/genetics , Pollen Tube/embryology , Pollen Tube/genetics , Pollination , Seeds/embryology , Seeds/genetics
15.
Mol Breed ; 42(12): 74, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37313323

ABSTRACT

LecRLKs (lectin receptor-like kinases) is a subfamily of RLKs (receptor like kinase) and takes part in mounds of biological processes in plant-environment interaction. However, the roles of LecRLKs in plant development are still elusive. Here, we showed that OsSRK1, belonging to LecRLK family in rice, had a relative higher expression in internode and stem in comparison with that in root and leaf. Importantly, srk1-1 and srk1-2, two genome-edited mutants of OsSRK1 using CRISPR/Cas9 system, exhibited obviously a decreased plant height and shorter length of the first internode and second internode compared with those in WT. Subsequently, histochemical sectioning showed that the stem diameter and the cell length in stem are significantly reduced in srk1-1 and srk1-2 compared with WT. Moreover, analyzing the expression of four gibberellin biosynthesis related genes showed that CPS, KAO, KS1, and GA3ox2 expression had similar levels between WT and mutants. Importantly, we further verified that OsSRK1 can directly interact with gibberellin receptor GID1. Together, our results revealed that LecRLKs family member OsSRK1 positively regulated plant height by controlling internode elongation which maybe depended on OsSRK1-GID1 interaction mediated gibberellin signaling transduction. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01340-6.

16.
Surg Endosc ; 36(11): 8170-8177, 2022 11.
Article in English | MEDLINE | ID: mdl-35501603

ABSTRACT

BACKGROUND: Being one of the core techniques of magnetic surgery, magnetic compression technique (MCT) has been used for digestive tract anastomosis reconstruction in experimental studies. This study verified the feasibility of gastroenteric anastomosis through natural orifice using MCT in rats. METHODS: The parent and daughter magnets were designed and manufactured for oral and anal insertion in 20 Sprague-Dawley rats. After anesthesia, the parent magnet was inserted into the colon spleen area through the anus, and the daughter magnet was inserted into the stomach through the mouth. Then the two magnets were positioned to attract each other and bind together. The position of the two magnets was monitored using X-ray. The time required for the formation of the anastomosis and expulsion of the magnets were recorded. 2 weeks later, the animal was sacrificed and the anastomotic specimen was obtained which was observed under naked eye and microscope. RESULTS: The gastroenteric anastomosis was successfully performed via natural orifices in 18 out of 20 rats. The mean time to construct the anastomosis was 3.78 ± 0.88 min. X-ray examination showed that the magnets were in the appropriate position in 17 rats. The magnets were excreted in 9.47 ± 1.62 days after surgery. The gross and microscopic examination of the specimen showed that the anastomoses were patent and the mucosa at the anastomotic was smooth. The mean bursting pressure of the anastomosis was 136.94 ± 6.79 mmHg. CONCLUSION: It is feasible to perform gastroenteric anastomosis through natural orifices by MCT.


Subject(s)
Magnetics , Magnets , Rats , Animals , Rats, Sprague-Dawley , Anastomosis, Surgical/methods , Magnetic Phenomena
17.
Angew Chem Int Ed Engl ; 61(16): e202201323, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35129260

ABSTRACT

Despite the fact that the high conductivity of two-dimensional laminated transition metal carbides/nitrides (MXenes) contributes to the outstanding electromagnetic interference (EMI) shielding by the reflection of electromagnetic waves (EWs), it is difficulty to improve EMI shielding by pursuing higher conductivity due to the limitation of intrinsic properties. Here, we achieve superior EMI shielding by introducing the absorption of EWs in MXenes with micro-sized wrinkles which are induced by abundant Ti vacancies under chemical etching. The shielding effectiveness is up to 107 dB at a thickness of 20 µm. Combining with atomic-scale structure observation and the first-principles calculations, it is concluded that the promotion of EMI shielding originates from the resonant absorption of formed electric dipoles induced by the asymmetrical distribution of charge densities near Ti vacancies. Our results could open a new vista for developing two-dimensional EMI shielding materials.

18.
Biochem Biophys Res Commun ; 575: 20-27, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34454176

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common disease with a multitude of complications. Increasing evidence shows that the dietary supplement with betaine, a natural chemical molecule, can effectively reduce the fat accumulation in the liver. Translational regulation is considered to play a vital role in gene expression, but whether betaine functions through the regulation of gene translational level is still unclear. To this end, RNC-seq (mRNAs bound to ribosome-nascent chain complex sequencing) and RNA-seq co-analyses were performed to identify betaine target genes by using the liver samples from high-fat diet adding betaine treated and high-fat diet treated mice. The results showed that betaine does play a lipid-lowering role by regulating the expression of gene translation levels; some NAFLD- and lipid metabolism-associated genes were differentially expressed at translational level, for example. And the translation ratio (TR) of gene significantly increased after betaine treatment. Finally, we identified a novel function gene, Gpc1, which may mediate the lipid-lowering effect of betaine in the liver. To sum up, this study depicted the molecular portrait of mice liver with or without betaine treatment from the angel of translatome and transcriptome, giving insights into the molecular mechanism of betaine-mediated lipid-lowering effect and also providing new clues for understanding and prevention of NAFLD.


Subject(s)
Betaine/pharmacology , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Disease Models, Animal , Gene Expression Profiling/methods , Lipid Metabolism , Lipotropic Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Protein Biosynthesis , Random Allocation , Sequence Analysis, RNA/methods , Transcriptome
19.
Plant Biotechnol J ; 19(2): 251-260, 2021 02.
Article in English | MEDLINE | ID: mdl-32741081

ABSTRACT

Heterosis utilization is the most effective way to improve rice yields. The cytoplasmic male-sterility (CMS) and photoperiod/thermosensitive genic male-sterility (PTGMS) systems have been widely used in rice production. However, the rate of resource utilization for the CMS system hybrid rice is low, and the hybrid seed production for the PTGMS system is affected by the environment. The technical limitations of these two breeding methods restrict the rapid development of hybrid rice. The advantages of the genic male-sterility (GMS) rice, such as stable sterility and free combination, can fill the gaps of the first two generations of hybrid rice technology. At present, the third-generation hybrid rice breeding technology is being used to realize the application of GMS materials in hybrid rice. This study aimed to use an artificial CMS gene as a pollen killer to create a smart sterile line for hybrid rice production. The clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) technology was used to successfully obtain a CYP703A3-deficient male-sterile mutant containing no genetically modified component in the genetic background of indica 9311. Through young ear callus transformation, this mutant was transformed with three sets of element-linked expression vectors, including pollen fertility restoration gene CYP703A3, pollen-lethality gene orfH79 and selection marker gene DsRed2. The maintainer 9311-3B with stable inheritance was obtained, which could realize the batch breeding of GMS materials. Further, the sterile line 9311-3A and restorer lines were used for hybridization, and a batch of superior combinations of hybrid rice was obtained.


Subject(s)
Oryza , Plant Infertility/genetics , Oryza/genetics , Plant Breeding , Technology
20.
RNA Biol ; 18(6): 863-874, 2021 06.
Article in English | MEDLINE | ID: mdl-32967529

ABSTRACT

Translational regulation plays a critical role in gene expression. However, there are few genome-wide studies on translational regulation in non-alcoholic fatty liver disease (NAFLD), which is a severe non-communicable epidemic worldwide. In this study, we performed RNC-mRNA (mRNAs bound to ribosome-nascent chain complex) sequencing and mRNA sequencing to probe the translation status of high-fat-diet (HFD) induced mouse fatty liver. Generally, in the HFD group compared to the control group, changes of translation ratios and changes in mRNA abundance had a negative correlation. The relative abundance of RNC-mRNAs and mRNAs were positively correlated, yet the former changed more slowly than the latter. However, the rate of change became more balanced when it came to the livers of mice that were fed the HFD plus lycopene, an antioxidant. This indicated relatively independent roles of translational modulation and transcriptional regulation. Furthermore, many genes were differentially regulated at the transcriptional or translational levels, suggesting a new screening strategy for functional genes. In conclusion, our analysis revealed the different and correlated role of translational control with transcriptional regulation in the HFD-induced mouse fatty liver relative to the control, which indicates critical roles of translational control for liver steatosis; thus, adding a new dimension towards a better understanding and improvement of treatment for NAFLD.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation , Non-alcoholic Fatty Liver Disease/genetics , Protein Biosynthesis/genetics , Transcription, Genetic/genetics , Animals , Diet, High-Fat/adverse effects , Hep G2 Cells , Humans , Liver/metabolism , Liver/pathology , Methylation , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL