Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.338
Filter
Add more filters

Publication year range
1.
Cell ; 185(6): 949-966.e19, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35247329

ABSTRACT

Beige fat plays key roles in the regulation of systemic energy homeostasis; however, detailed mechanisms and safe strategy for its activation remain elusive. In this study, we discovered that local hyperthermia therapy (LHT) targeting beige fat promoted its activation in humans and mice. LHT achieved using a hydrogel-based photothermal therapy activated beige fat, preventing and treating obesity in mice without adverse effects. HSF1 is required for the effects since HSF1 deficiency blunted the metabolic benefits of LHT. HSF1 regulates Hnrnpa2b1 (A2b1) transcription, leading to increased mRNA stability of key metabolic genes. Importantly, analysis of human association studies followed by functional analysis revealed that the HSF1 gain-of-function variant p.P365T is associated with improved metabolic performance in humans and increased A2b1 transcription in mice and cells. Overall, we demonstrate that LHT offers a promising strategy against obesity by inducing beige fat activation via HSF1-A2B1 transcriptional axis.


Subject(s)
Adipose Tissue, Beige , Adipose Tissue, White , Hyperthermia, Induced , Obesity/therapy , Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Mice , Mice, Inbred C57BL , Obesity/metabolism
2.
Immunity ; 56(3): 620-634.e11, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36854305

ABSTRACT

Monoamine insufficiency is suggested to be associated with depressive features such as sadness, anhedonia, insomnia, and cognitive dysfunction, but the mechanisms that cause it are unclear. We found that the acute-phase protein lipopolysaccharide-binding protein (LBP) inhibits monoamine biosynthesis by acting as an endogenous inhibitor of dopamine-ß-hydroxylase (DBH) and aromatic-L-amino-acid-decarboxylase (DDC). LBP expression was increased in individuals with depression and by diverse stress challenges in mice. LBP antibodies and LBP knockdown inhibited monoamine insufficiency and depression-like features in mice, which worsened with LBP overexpression or administration. Monoamine insufficiency and depression-like symptoms were not induced by stressful stimuli in LBP-deficient mice, further highlighting a role for LBP in stress-induced depression, and a peptide we designed that blocks LBP-DBH and LBP-DDC interactions showed anti-depression effects in mice. This study reveals an important role for LBP in regulating monoamine biosynthesis and suggests that targeting LBP may have potential as a treatment for some individuals with depression.


Subject(s)
Carrier Proteins , Depression , Mice , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Acute-Phase Proteins/genetics , Acute-Phase Proteins/metabolism , Membrane Glycoproteins/metabolism , Amines
3.
Immunity ; 56(2): 320-335.e9, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36693372

ABSTRACT

Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.


Subject(s)
Immunity, Innate , Pneumonia , Humans , Dopamine/metabolism , Lymphocytes , Lung/metabolism , Pneumonia/metabolism , Inflammation/metabolism , Interleukin-33/metabolism
4.
Cell ; 164(1-2): 279-292, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26771496

ABSTRACT

Mammalian interspecific hybrids provide unique advantages for mechanistic studies of speciation, gene expression regulation, and X chromosome inactivation (XCI) but are constrained by their limited natural resources. Previous artificially generated mammalian interspecific hybrid cells are usually tetraploids with unstable genomes and limited developmental abilities. Here, we report the generation of mouse-rat allodiploid embryonic stem cells (AdESCs) by fusing haploid ESCs of the two species. The AdESCs have a stable allodiploid genome and are capable of differentiating into all three germ layers and early-stage germ cells. Both the mouse and rat alleles have comparable contributions to the expression of most genes. We have proven AdESCs as a powerful tool to study the mechanisms regulating X chromosome inactivation and to identify X inactivation-escaping genes, as well as to efficiently identify genes regulating phenotypic differences between species. A similar method could be used to create hybrid AdESCs of other distantly related species.


Subject(s)
Cell Fusion/methods , Chimera/genetics , Embryonic Stem Cells/cytology , Hybrid Cells , Mice , Rats , Animals , Cell Differentiation , Embryoid Bodies , Embryonic Stem Cells/metabolism , Female , Haploidy , Male , Mice, Inbred Strains , Rats, Inbred F344 , Species Specificity , X Chromosome Inactivation
5.
Nature ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232164

ABSTRACT

Histopathology image evaluation is indispensable for cancer diagnoses and subtype classification. Standard artificial intelligence methods for histopathology image analyses have focused on optimizing specialized models for each diagnostic task1,2. Although such methods have achieved some success, they often have limited generalizability to images generated by different digitization protocols or samples collected from different populations3. Here, to address this challenge, we devised the Clinical Histopathology Imaging Evaluation Foundation (CHIEF) model, a general-purpose weakly supervised machine learning framework to extract pathology imaging features for systematic cancer evaluation. CHIEF leverages two complementary pretraining methods to extract diverse pathology representations: unsupervised pretraining for tile-level feature identification and weakly supervised pretraining for whole-slide pattern recognition. We developed CHIEF using 60,530 whole-slide images spanning 19 anatomical sites. Through pretraining on 44 terabytes of high-resolution pathology imaging datasets, CHIEF extracted microscopic representations useful for cancer cell detection, tumour origin identification, molecular profile characterization and prognostic prediction. We successfully validated CHIEF using 19,491 whole-slide images from 32 independent slide sets collected from 24 hospitals and cohorts internationally. Overall, CHIEF outperformed the state-of-the-art deep learning methods by up to 36.1%, showing its ability to address domain shifts observed in samples from diverse populations and processed by different slide preparation methods. CHIEF provides a generalizable foundation for efficient digital pathology evaluation for patients with cancer.

6.
Nature ; 604(7907): 771-778, 2022 04.
Article in English | MEDLINE | ID: mdl-35418677

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) constitute an evolutionarily ancient family of receptors that often undergo autoproteolysis to produce α and ß subunits1-3. A tethered agonism mediated by the 'Stachel sequence' of the ß subunit has been proposed to have central roles in aGPCR activation4-6. Here we present three cryo-electron microscopy structures of aGPCRs coupled to the Gs heterotrimer. Two of these aGPCRs are activated by tethered Stachel sequences-the ADGRG2-ß-Gs complex and the ADGRG4-ß-Gs complex (in which ß indicates the ß subunit of the aGPCR)-and the other is the full-length ADGRG2 in complex with the exogenous ADGRG2 Stachel-sequence-derived peptide agonist IP15 (ADGRG2(FL)-IP15-Gs). The Stachel sequences of both ADGRG2-ß and ADGRG4-ß assume a U shape and insert deeply into the seven-transmembrane bundles. Constituting the FXφφφXφ motif (in which φ represents a hydrophobic residue), five residues of ADGRG2-ß or ADGRG4-ß extend like fingers to mediate binding to the seven-transmembrane domain and activation of the receptor. The structure of the ADGRG2(FL)-IP15-Gs complex reveals the structural basis for the improved binding affinity of IP15 compared with VPM-p15 and indicates that rational design of peptidic agonists could be achieved by exploiting aGPCR-ß structures. By converting the 'finger residues' to acidic residues, we develop a method to generate peptidic antagonists towards several aGPCRs. Collectively, our study provides structural and biochemical insights into the tethered activation mechanism of aGPCRs.


Subject(s)
Peptides , Receptors, G-Protein-Coupled , Cryoelectron Microscopy , Humans , Peptides/metabolism , Protein Domains , Receptors, G-Protein-Coupled/metabolism
7.
EMBO J ; 42(3): e111304, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36477886

ABSTRACT

Parvalbumin-positive neurons (PVs) are the main class of inhibitory neurons in the mammalian central nervous system. By examining diurnal changes in synaptic and neuronal activity of PVs in the supragranular layer of the mouse primary visual cortex (V1), we found that both PV input and output are modulated in a time- and sleep-dependent manner throughout the 24-h day. We first show that PV-evoked inhibition is stronger by the end of the light cycle (ZT12) relative to the end of the dark cycle (ZT0), which is in line with the lower inhibitory input of PV neurons at ZT12 than at ZT0. Interestingly, PV inhibitory and excitatory synaptic transmission slowly oscillate in opposite directions during the light/dark cycle. Although excitatory synapses are predominantly regulated by experience, inhibitory synapses are regulated by sleep, via acetylcholine activating M1 receptors. Consistent with synaptic regulation of PVs, we further show in vivo that spontaneous PV activity displays daily rhythm mainly determined by visual experience, which negatively correlates with the activity cycle of surrounding pyramidal neurons and the dorsal lateral geniculate nucleus-evoked responses in V1. These findings underscore the physiological significance of PV's daily modulation.


Subject(s)
Neurons , Parvalbumins , Animals , Mice , Parvalbumins/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Synaptic Transmission , Sleep , Mammals
8.
EMBO J ; 42(8): e112401, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36811145

ABSTRACT

The maintenance of sodium/potassium (Na+ /K+ ) homeostasis in plant cells is essential for salt tolerance. Plants export excess Na+ out of cells mainly through the Salt Overly Sensitive (SOS) pathway, activated by a calcium signal; however, it is unknown whether other signals regulate the SOS pathway and how K+ uptake is regulated under salt stress. Phosphatidic acid (PA) is emerging as a lipid signaling molecule that modulates cellular processes in development and the response to stimuli. Here, we show that PA binds to the residue Lys57 in SOS2, a core member of the SOS pathway, under salt stress, promoting the activity and plasma membrane localization of SOS2, which activates the Na+ /H+ antiporter SOS1 to promote the Na+ efflux. In addition, we reveal that PA promotes the phosphorylation of SOS3-like calcium-binding protein 8 (SCaBP8) by SOS2 under salt stress, which attenuates the SCaBP8-mediated inhibition of Arabidopsis K+ transporter 1 (AKT1), an inward-rectifying K+ channel. These findings suggest that PA regulates the SOS pathway and AKT1 activity under salt stress, promoting Na+ efflux and K+ influx to maintain Na+ /K+ homeostasis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Protein Serine-Threonine Kinases , Salt Stress , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Homeostasis , Phosphatidic Acids/metabolism , Potassium/metabolism , Protein Serine-Threonine Kinases/metabolism , Salt Stress/genetics , Sodium/metabolism
9.
EMBO J ; 42(9): e111762, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36943004

ABSTRACT

Senescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined. Herein, we found that the expression of the splicing factor Y-box binding protein 1 (YBX1) in BMSCs decreased with aging in mice and humans. YBX1 deficiency resulted in mis-splicing in genes linked to BMSC osteogenic differentiation and senescence, such as Fn1, Nrp2, Sirt2, Sp7, and Spp1, thus contributing to BMSC senescence and differentiation shift during aging. Deletion of Ybx1 in BMSCs accelerated bone loss in mice, while its overexpression stimulated bone formation. Finally, we identified a small compound, sciadopitysin, which attenuated the degradation of YBX1 and bone loss in old mice. Our study demonstrated that YBX1 governs cell fate of BMSCs via fine control of RNA splicing and provides a potential therapeutic target for age-related osteoporosis.


Subject(s)
Mesenchymal Stem Cells , Osteoporosis , Humans , Mice , Animals , Osteogenesis/genetics , Aging/metabolism , Cellular Senescence , Cell Differentiation/genetics , Osteoporosis/metabolism , Bone Marrow Cells , Y-Box-Binding Protein 1/metabolism
10.
Genome Res ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39137961

ABSTRACT

Chromatin loop identification plays an important role in molecular biology and 3D genomics research, as it constitutes a fundamental process in transcription and gene regulation. Such precise chromatin structures can be identified across genome-wide interaction matrices via Hi-C data analysis, which is essential for unraveling the intricacies of transcriptional regulation. Given the increasing number of genome-wide contact maps, derived from both in situ Hi-C and single-cell Hi-C experiments, there is a pressing need for efficient and resilient algorithms capable of processing data from diverse experiments rapidly and adaptively. Here, we propose YOLOOP, a novel detection-based framework that is different from the conventional paradigm. YOLOOP stands out for its speed, surpassing the performance of previous state-of-the-art (SOTA) chromatin loop detection methods. It achieves a 30-fold acceleration compared with classification-based methods, up to 20-fold acceleration compared with the SOTA kernel-based framework, and a fivefold acceleration compared with statistical algorithms. Furthermore, the proposed framework is capable of generalizing across various cell types, multiresolution Hi-C maps, and diverse experimental protocols. Compared with the existing paradigms, YOLOOP shows up to a 10% increase in recall and a 15% increase in F1-score, particularly noteworthy in the GM12878 cell line. YOLOOP also offers fast adaptability with straightforward fine-tuning, making it readily applicable to extremely sparse single-cell Hi-C contact maps. It maintains its exceptional speed, completing genome-wide detection at a 10 kb resolution for a single-cell contact map within 1 min and for a 900-cell-superimposed contact map within 3 min, enabling fast analysis of large-scale single-cell data.

12.
PLoS Biol ; 22(5): e3002621, 2024 May.
Article in English | MEDLINE | ID: mdl-38805565

ABSTRACT

Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.


Subject(s)
Adenocarcinoma of Lung , Cholesterol , Disease Progression , Hepatocyte Nuclear Factor 3-gamma , Lung Neoplasms , Cholesterol/metabolism , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Animals , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice , Hepatocyte Nuclear Factor 3-gamma/metabolism , Hepatocyte Nuclear Factor 3-gamma/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement
13.
Nature ; 600(7887): 164-169, 2021 12.
Article in English | MEDLINE | ID: mdl-34789875

ABSTRACT

In the clades of animals that diverged from the bony fish, a group of Mas-related G-protein-coupled receptors (MRGPRs) evolved that have an active role in itch and allergic signals1,2. As an MRGPR, MRGPRX2 is known to sense basic secretagogues (agents that promote secretion) and is involved in itch signals and eliciting pseudoallergic reactions3-6. MRGPRX2 has been targeted by drug development efforts to prevent the side effects induced by certain drugs or to treat allergic diseases. Here we report a set of cryo-electron microscopy structures of the MRGPRX2-Gi1 trimer in complex with polycationic compound 48/80 or with inflammatory peptides. The structures of the MRGPRX2-Gi1 complex exhibited shallow, solvent-exposed ligand-binding pockets. We identified key common structural features of MRGPRX2 and describe a consensus motif for peptidic allergens. Beneath the ligand-binding pocket, the unusual kink formation at transmembrane domain 6 (TM6) and the replacement of the general toggle switch from Trp6.48 to Gly6.48 (superscript annotations as per Ballesteros-Weinstein nomenclature) suggest a distinct activation process. We characterized the interfaces of MRGPRX2 and the Gi trimer, and mapped the residues associated with key single-nucleotide polymorphisms on both the ligand and G-protein interfaces of MRGPRX2. Collectively, our results provide a structural basis for the sensing of cationic allergens by MRGPRX2, potentially facilitating the rational design of therapies to prevent unwanted pseudoallergic reactions.


Subject(s)
Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Pruritus/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/chemistry , Receptors, Neuropeptide/metabolism , Allergens/immunology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Consensus Sequence , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Models, Molecular , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/ultrastructure , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/ultrastructure , Receptors, Neuropeptide/immunology , Receptors, Neuropeptide/ultrastructure
14.
Mol Cell ; 75(4): 835-848.e8, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31378462

ABSTRACT

Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.


Subject(s)
Codon, Terminator , Drosophila Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/metabolism , Proteostasis Deficiencies/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , HeLa Cells , Humans , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism
15.
Mol Cell ; 75(4): 823-834.e5, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31302001

ABSTRACT

Sirt3, as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolic adaption to various stresses. However, how to regulate Sirt3 activity responding to metabolic stress remains largely unknown. Here, we report Sirt3 as a SUMOylated protein in mitochondria. SUMOylation suppresses Sirt3 catalytic activity. SUMOylation-deficient Sirt3 shows elevated deacetylation on mitochondrial proteins and increased fatty acid oxidation. During fasting, SUMO-specific protease SENP1 is accumulated in mitochondria and quickly de-SUMOylates and activates Sirt3. SENP1 deficiency results in hyper-SUMOylation of Sirt3 and hyper-acetylation of mitochondrial proteins, which reduces mitochondrial metabolic adaption responding to fasting. Furthermore, we find that fasting induces SENP1 translocation into mitochondria to activate Sirt3. The studies on mice show that Sirt3 SUMOylation mutation reduces fat mass and antagonizes high-fat diet (HFD)-induced obesity via increasing oxidative phosphorylation and energy expenditure. Our results reveal that SENP1-Sirt3 signaling modulates Sirt3 activation and mitochondrial metabolism during metabolic stress.


Subject(s)
Cysteine Endopeptidases/metabolism , Mitochondria/metabolism , Mutation , Obesity/metabolism , Signal Transduction , Sirtuin 3/metabolism , Sumoylation , Acetylation , Animals , Cysteine Endopeptidases/genetics , Dietary Fats/adverse effects , Dietary Fats/pharmacology , HEK293 Cells , Humans , Male , Mice , Mice, Mutant Strains , Mitochondria/genetics , Mitochondria/pathology , Obesity/chemically induced , Obesity/genetics , Obesity/pathology , Sirtuin 3/genetics
16.
Proc Natl Acad Sci U S A ; 121(35): e2405877121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39163338

ABSTRACT

The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.


Subject(s)
Doxorubicin , Drug Delivery Systems , Humans , Animals , Drug Delivery Systems/methods , Doxorubicin/chemistry , Doxorubicin/pharmacology , Halogenation , Mice , Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Macromolecular Substances/chemistry , Optical Imaging/methods , Fluorine-19 Magnetic Resonance Imaging/methods , Neoplasms/drug therapy , Cell Line, Tumor
17.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635634

ABSTRACT

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Signal Transduction , Ubiquitins/metabolism , Gene Expression Regulation, Plant , F-Box Proteins/genetics , F-Box Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
19.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36796361

ABSTRACT

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Subject(s)
Asthenozoospermia , Tupaia , Animals , Male , Macaca fascicularis , Primates , Semen , Sperm Motility , Tupaiidae
20.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38555470

ABSTRACT

Single-cell RNA sequencing has achieved massive success in biological research fields. Discovering novel cell types from single-cell transcriptomics has been demonstrated to be essential in the field of biomedicine, yet is time-consuming and needs prior knowledge. With the unprecedented boom in cell atlases, auto-annotation tools have become more prevalent due to their speed, accuracy and user-friendly features. However, existing tools have mostly focused on general cell-type annotation and have not adequately addressed the challenge of discovering novel rare cell types. In this work, we introduce scNovel, a powerful deep learning-based neural network that specifically focuses on novel rare cell discovery. By testing our model on diverse datasets with different scales, protocols and degrees of imbalance, we demonstrate that scNovel significantly outperforms previous state-of-the-art novel cell detection models, reaching the most AUROC performance(the only one method whose averaged AUROC results are above 94%, up to 16.26% more comparing to the second-best method). We validate scNovel's performance on a million-scale dataset to illustrate the scalability of scNovel further. Applying scNovel on a clinical COVID-19 dataset, three potential novel subtypes of Macrophages are identified, where the COVID-related differential genes are also detected to have consistent expression patterns through deeper analysis. We believe that our proposed pipeline will be an important tool for high-throughput clinical data in a wide range of applications.


Subject(s)
COVID-19 , Deep Learning , Humans , Gene Expression Profiling , Macrophages , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL