Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell Mol Life Sci ; 81(1): 331, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107572

ABSTRACT

The rising incidences of atherosclerosis have necessitated efforts to identify novel targets for therapeutic interventions. In the present study, we observed increased expression of the mechanosensitive calcium channel Piezo1 transcript in mouse and human atherosclerotic plaques, correlating with infiltration of PIEZO1-expressing macrophages. In vitro administration of Yoda1, a specific agonist for PIEZO1, led to increased foam cell apoptosis and enhanced phagocytosis by macrophages. Mechanistically, PIEZO1 activation resulted in intracellular F-actin rearrangement, elevated mitochondrial ROS levels and induction of mitochondrial fragmentation upon PIEZO1 activation, as well as increased expression of anti-inflammatory genes. In vivo, ApoE-/- mice treated with Yoda1 exhibited regression of atherosclerosis, enhanced stability of advanced lesions, reduced plaque size and necrotic core, increased collagen content, and reduced expression levels of inflammatory markers. Our findings propose PIEZO1 as a novel and potential therapeutic target in atherosclerosis.


Subject(s)
Apoptosis , Atherosclerosis , Foam Cells , Ion Channels , Macrophages , Phagocytosis , Animals , Ion Channels/metabolism , Ion Channels/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Mice , Foam Cells/metabolism , Foam Cells/pathology , Humans , Macrophages/metabolism , Mice, Inbred C57BL , Thiophenes/pharmacology , Male , Reactive Oxygen Species/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Mitochondria/metabolism , Pyrazines , Thiadiazoles
2.
Acta Pharmacol Sin ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384887

ABSTRACT

p53, a tumor suppressor protein, has a vital role in the regulation of the cell cycle, apoptosis, and DNA damage repair. The degradation of p53 is predominantly controlled by the murine double minute 2 (MDM2) protein, a ubiquitin E3 ligase. The overexpression or amplification of MDM2 is commonly observed in various human cancers bearing wild-type p53 alleles, leading to the rapid degradation of the p53 protein and the attenuation of p53 tumor suppression functions. Thus, a major effort in p53-based cancer therapy has been to research MDM2 antagonists that specifically stabilize and activate p53, leading to the suppression of tumor growth. However, despite numerous efforts to develop MDM2 antagonists, to date they have failed to reach clinical use, largely because of the cytotoxicity associated with these small molecules. This study used our newly designed structure-based virtual screening approach on a commercial compound library to identify a novel compound, CGMA-Q18, which directly binds to MDM2, leading to the activation of p53, the induction of apoptosis, and cell cycle arrest in cancer cells. Notably, CGMA-Q18 significantly inhibited tumor xenograft growth in nude mice without observable toxicity. These findings highlight our useful virtual screening protocol and CGMA-Q18 as a putative MDM2 antagonist.

3.
J Sep Sci ; 45(9): 1493-1501, 2022 May.
Article in English | MEDLINE | ID: mdl-35157355

ABSTRACT

Covalent organic frameworks with tunable porous crystallinity and outstanding stability have exhibited fascinating pretreatment performance as ideal extraction media. Herein, the ß-ketoenamine-linked TpPa-1 synthesized by 1,3,5-triformylphloroglucinol and paraphenylenediamine was employed as the absorbent for online micro-solid phase extraction of trace bisphenols combined with high-performance liquid chromatography detection. A series of characterizations indicated that the TpPa-1 possessed large surface areas, high stability, and hydrophobicity. The main experimental parameters affecting the extraction efficiency were optimized in detail. Compared with four commercial sorbents, the TpPa-1 exhibited superior enrichment capacity for extracting bisphenols. Under the optimum conditions, the established method demonstrated a wide linear range and high sensitivity with the limit of detection ranging from 0.05-0.06 µg/L. Furthermore, the developed method was successfully applied to determine bisphenols in plastic samples. Bisphenol A was actually detected in a transparent box with a concentration of 0.31 µg/g, and the recoveries of the four bisphenols in the plastic samples were 80.5-116% with the relative standard deviation less than 9.2%. Such performance was attributed to recognition affinity, including the π-π affinity, hydrophobic effect, and hydrogen bond. These results demonstrated that TpPa-1 possessed great potential to be an excellent pretreatment medium for online separation and analysis of trace analytes in complex samples.


Subject(s)
Metal-Organic Frameworks , Benzhydryl Compounds , Chromatography, High Pressure Liquid , Metal-Organic Frameworks/chemistry , Phenols , Plastics , Solid Phase Extraction/methods
4.
Hum Mol Genet ; 26(3): 637-649, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28053049

ABSTRACT

Coagulation factor XI (FXI) has become increasingly interesting for its role in pathogenesis of thrombosis. While elevated plasma levels of FXI have been associated with venous thromboembolism and ischemic stroke, its deficiency is associated with mild bleeding. We aimed to determine novel genetic and post-transcriptional plasma FXI regulators.We performed a genome-wide association study (GWAS) for plasma FXI levels, using novel data imputed to the 1000 Genomes reference panel. Individual GWAS analyses, including a total of 16,169 European individuals from the ARIC, GHS, MARTHA and PROCARDIS studies, were meta-analysed and further replicated in 2,045 individuals from the F5L family, GAIT2 and MEGA studies. Additional association with activated partial thromboplastin time (aPTT) was tested for the top SNPs. In addition, a study on the effect of miRNA on FXI regulation was performed using in silico prediction tools and in vitro luciferase assays.Three loci showed robust, replicating association with circulating FXI levels: KNG1 (rs710446, P-value = 2.07 × 10-302), F11 (rs4253417, P-value = 2.86 × 10-193), and a novel association in GCKR (rs780094, P-value = 3.56 ×10-09), here for the first time implicated in FXI regulation. The two first SNPs (rs710446 and rs4253417) also associated with aPTT. Conditional and haplotype analyses demonstrated a complex association signal, with additional novel SNPs modulating plasma FXI levels in both the F11 and KNG1 loci. Finally, eight miRNAs were predicted to bind F11 mRNA. Over-expression of either miR-145 or miR-181 significantly reduced the luciferase activity in cells transfected with a plasmid containing FXI-3'UTR.These results should open the door to new therapeutic targets for thrombosis prevention.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Adhesion Molecules/blood , Kininogens/genetics , Receptors, Cell Surface/blood , Thrombosis/genetics , Cell Adhesion Molecules/genetics , Computer Simulation , Female , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Partial Thromboplastin Time , Polymorphism, Single Nucleotide , Protein Processing, Post-Translational/genetics , Receptors, Cell Surface/genetics , Thrombosis/blood , Thrombosis/physiopathology
5.
Circ Res ; 120(4): 633-644, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-27895035

ABSTRACT

RATIONALE: In the search for markers and modulators of vascular disease, microRNAs (miRNAs) have emerged as potent therapeutic targets. OBJECTIVE: To investigate miRNAs of clinical interest in patients with unstable carotid stenosis at risk of stroke. METHODS AND RESULTS: Using patient material from the BiKE (Biobank of Karolinska Endarterectomies), we profiled miRNA expression in patients with stable versus unstable carotid plaque. A polymerase chain reaction-based miRNA array of plasma, sampled at the carotid lesion site, identified 8 deregulated miRNAs (miR-15b, miR-29c, miR-30c/d, miR-150, miR-191, miR-210, and miR-500). miR-210 was the most significantly downregulated miRNA in local plasma material. Laser capture microdissection and in situ hybridization revealed a distinct localization of miR-210 in fibrous caps. We confirmed that miR-210 directly targets the tumor suppressor gene APC (adenomatous polyposis coli), thereby affecting Wnt (Wingless-related integration site) signaling and regulating smooth muscle cell survival, as well as differentiation in advanced atherosclerotic lesions. Substantial changes in arterial miR-210 were detectable in 2 rodent models of vascular remodeling and plaque rupture. Modulating miR-210 in vitro and in vivo improved fibrous cap stability with implications for vascular disease. CONCLUSIONS: An unstable carotid plaque at risk of stroke is characterized by low expression of miR-210. miR-210 contributes to stabilizing carotid plaques through inhibition of APC, ensuring smooth muscle cell survival. We present local delivery of miR-210 as a therapeutic approach for prevention of atherothrombotic vascular events.


Subject(s)
MicroRNAs/administration & dosage , MicroRNAs/biosynthesis , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/therapy , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/therapy , Carotid Stenosis/metabolism , Carotid Stenosis/pathology , Carotid Stenosis/therapy , Cells, Cultured , Cohort Studies , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Laser Capture Microdissection/methods , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/analysis , Plaque, Atherosclerotic/pathology , Rats , Rats, Sprague-Dawley , Stroke/metabolism , Stroke/pathology , Stroke/prevention & control
6.
Int J Mol Sci ; 20(5)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866414

ABSTRACT

Cell⁻cell adhesion plays an important role in regulation of cell proliferation, migration, survival, and drug sensitivity. Metformin, a first line drug for type 2 diabetes, has been shown to possess anti-cancer activities. However, whether cell⁻cell adhesion affects metformin anti-cancer activity is unknown. In this study, Microscopic and FACS analyses showed that metformin induced cancer cell⁻cell adhesion exemplified by cell aggregation and anoikis under glucose restriction. Furthermore, western blot and QPCR analyses revealed that metformin dramatically upregulated integrin ß1 expression. Silencing of integrin ß1 significantly disrupted cell aggregation and reduced anoikis induced by metformin. Moreover, we showed that p53 family member ΔNp63α transcriptionally suppressed integrin ß1 expression and is responsible for metformin-mediated upregulation of integrin ß1. In summary, this study reveals a novel mechanism for metformin anticancer activity and demonstrates that cell⁻cell adhesion mediated by integrin ß1 plays a critical role in metformin-induced anoikis.


Subject(s)
Glucose/pharmacology , Integrin beta1/genetics , Integrin beta1/metabolism , Metformin/pharmacology , Neoplasms/metabolism , Anoikis , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , HEK293 Cells , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Up-Regulation
7.
J Cell Biochem ; 119(6): 4945-4956, 2018 06.
Article in English | MEDLINE | ID: mdl-29384218

ABSTRACT

FOSL1 is frequently overexpressed in multiple types of human cancers including invasive breast cancers and implicated in cancer invasion and metastasis. However, how FOSL1 is overexpressed in cancers remains to be elucidated. Several microRNAs (miRNAs) have been shown to target FOSL1 and are downregulated in human cancers. Here, we report that miR-130a is a novel FOSL1 targeting miRNA. Using gene expression microarray analysis, we found that FOSL1 is among the most up-regulated genes in cells transfected with miR-130a inhibitors. Transient transfection-immunoblot, RNA-immunoprecipitation, and luciferase reporter assays revealed that miR-130a directly targets FOSL1 mRNA at its 3'-UTR. Overexpression of miR-130a significantly reduced the levels of FOSL1 in invasive breast cancer MDA-MB-231 and Hs578T cell lines and suppresses their migration and invasion. This inhibition can be rescued by ectopic expression of miR-130a-resistant FOSL1. Interestingly, we show that overexpression of miR-130a increased the levels of tight-junction protein ZO-1 while inhibition of miR-130a reduced the levels of ZO-1. We further show that miR-130a expression is significantly reduced in cancer tissues from triple-negative breast cancer (TNBC) patients, correlating significantly with the upregulation of FOSL1 expression, compared to non-TNBC tissues. Together, our results reveal that miR-130a directly targets FOSL1 and suppresses the inhibition of ZO-1, thus inhibiting cancer cell migration and invasion, in TNBCs.


Subject(s)
Cell Movement , Gene Expression Regulation, Neoplastic , MicroRNAs/biosynthesis , Proto-Oncogene Proteins c-fos/biosynthesis , RNA, Neoplasm/biosynthesis , Triple Negative Breast Neoplasms/metabolism , Up-Regulation , Zonula Occludens-1 Protein/biosynthesis , Cell Line, Tumor , Female , HEK293 Cells , Humans , MicroRNAs/genetics , Neoplasm Invasiveness , Proto-Oncogene Proteins c-fos/genetics , RNA, Neoplasm/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Zonula Occludens-1 Protein/genetics
8.
Arterioscler Thromb Vasc Biol ; 36(9): 1947-61, 2016 09.
Article in English | MEDLINE | ID: mdl-27470516

ABSTRACT

OBJECTIVE: Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. APPROACH AND RESULTS: Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P<0.0001) and in rat intimal hyperplasia (r>0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. CONCLUSIONS: We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autoantigens/metabolism , Calcium-Binding Proteins/metabolism , Carotid Artery Diseases/metabolism , Cytoskeletal Proteins/metabolism , Intermediate Filament Proteins/metabolism , LIM Domain Proteins/metabolism , Microfilament Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic , Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Autoantigens/genetics , Calcium-Binding Proteins/genetics , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Carotid Artery Diseases/physiopathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Case-Control Studies , Cell Dedifferentiation , Cells, Cultured , Cytoskeletal Proteins/genetics , Disease Models, Animal , Down-Regulation , Genetic Association Studies , Humans , Intermediate Filament Proteins/genetics , LIM Domain Proteins/genetics , Male , Mice, Knockout , Microfilament Proteins/genetics , Middle Aged , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Neointima , Phenotype , RNA Interference , Rats, Sprague-Dawley , Signal Transduction , Time Factors , Transfection , Vasoconstriction
9.
Circ J ; 81(12): 1945-1952, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-28747613

ABSTRACT

BACKGROUND: Increased inflammatory activity destabilizes the atherosclerotic lesion and may lead to atherothrombosis and symptomatic cardiovascular disease. Co-stimulatory molecules, such as CD137, are key regulators of inflammation, and CD137 activity regulates inflammation in experimental atherosclerosis. Here, we hypothesized that CD137 activation promotes carotid artery inflammation and atherothrombosis.Methods and Results:In a model of inducible atherothrombosis with surgical ligation of the right carotid artery and a subsequent placement of a polyethene cuff, elevated levels of CD137 and CD137 ligand mRNA in atherothrombotic vs. non-atherothrombotic murine carotid lesions was observed. Mice treated with the CD137 agonistic antibody 2A showed signs of increased inflammation in the aorta and a higher proportion of CD8+T cells in spleen and blood. In carotid lesions of 2A-treated mice, significantly higher counts of CD8+and major histocompatibility (MHC)-class II molecule I-Ab+cells were observed. Treatment with the CD137 agonistic antibody 2A did not significantly affect the atherothrombosis frequency in 16-week-old mice in this model. CONCLUSIONS: Levels of CD137 and CD137 ligand mRNA were higher in advanced atherosclerotic disease compared to control vessels, and treatment with the CD137 agonistic antibody 2A, in a murine model for inducible atherothrombosis promoted vascular inflammation, but had no significant effect on atherothrombosis frequency at this early disease stage.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carotid Arteries/drug effects , Inflammation/chemically induced , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , Carotid Arteries/pathology , Carotid Artery Thrombosis , Mice , RNA, Messenger/analysis , Tumor Necrosis Factor Receptor Superfamily, Member 9/analysis , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
10.
Arterioscler Thromb Vasc Biol ; 35(9): 1945-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26183619

ABSTRACT

OBJECTIVE: Despite advances in stent technology for vascular interventions, in-stent restenosis (ISR) because of myointimal hyperplasia remains a major complication. APPROACH AND RESULTS: We investigated the regulatory role of microRNAs in myointimal hyperplasia/ISR, using a humanized animal model in which balloon-injured human internal mammary arteries with or without stenting were transplanted into Rowett nude rats, followed by microRNA profiling. miR-21 was the only significantly upregulated candidate. In addition, miR-21 expression was increased in human tissue samples from patients with ISR compared with coronary artery disease specimen. We systemically repressed miR-21 via intravenous fluorescein-tagged-locked nucleic acid-anti-miR-21 (anti-21) in our humanized myointimal hyperplasia model. As expected, suppression of vascular miR-21 correlated dose dependently with reduced luminal obliteration. Furthermore, anti-21 did not impede reendothelialization. However, systemic anti-miR-21 had substantial off-target effects, lowering miR-21 expression in liver, heart, lung, and kidney with concomitant increase in serum creatinine levels. We therefore assessed the feasibility of local miR-21 suppression using anti-21-coated stents. Compared with bare-metal stents, anti-21-coated stents effectively reduced ISR, whereas no significant off-target effects could be observed. CONCLUSION: This study demonstrates the efficacy of an anti-miR-coated stent for the reduction of ISR.


Subject(s)
Antibodies, Antinuclear/pharmacology , Coated Materials, Biocompatible , Coronary Restenosis/prevention & control , Gene Expression Regulation , Graft Occlusion, Vascular/prevention & control , MicroRNAs/genetics , Animals , Cell Proliferation/drug effects , Coronary Restenosis/genetics , Coronary Restenosis/metabolism , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Coronary Vessels/ultrastructure , Disease Models, Animal , Drug-Eluting Stents , Female , Graft Occlusion, Vascular/genetics , Graft Occlusion, Vascular/metabolism , Humans , Male , MicroRNAs/biosynthesis , MicroRNAs/immunology , Microscopy, Electron, Scanning , Middle Aged , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/ultrastructure , Neointima/metabolism , Neointima/pathology , Prosthesis Design , Rats , Rats, Nude
11.
J Biol Chem ; 289(8): 5097-108, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24403071

ABSTRACT

Ovarian tumor domain-containing ubiquitin (Ub) aldehyde binding protein 1 (Otub1) regulates p53 stability and activity via non-canonical inhibition of the MDM2 cognate Ub-conjugating enzyme (E2) UbcH5. However, it is not clear how this activity of Otub1 is regulated in cells. Here we report that Otub1 is monoubiquitinated by UbcH5 in cells and in vitro, primarily at the lysine 59 and 109 residues. This monoubiquitination, in turn, contributes to the activity of Otub1 to suppress UbcH5. The lysine-free Otub1 mutant (Otub1(K0)) fails to be monoubiquitinated and is unable to suppress the Ub-conjugating activity of UbcH5 in vitro and the MDM2-mediated p53 ubiquitination in cells. Consistently, this mutant is unable to stabilize p53, induce apoptosis, and suppress cell proliferation. Overexpression of Otub1(K0) inhibits DNA-damage induced apoptosis. Adding either Lys-59 or Lys-109 back to the Otub1(K0) mutant restores the monoubiquitination of Otub1 and its function to stabilize and activate p53. We further show that UbcH5 preferentially binds to the monoubiquitinated Otub1 via Ub interaction with its backside donor Ub-interacting surface, suggesting that this binding interferes with the self-assembly of Ub-charged UbcH5 (UbcH5∼Ub) conjugates, which is critical for Ub transfer. Thus, our data reveal novel insights into the Otub1 inhibition of E2 wherein monoubiquitination promotes the interaction of Otub1 with UbcH5 and the function to suppress it.


Subject(s)
Ovarian Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , Amino Acid Sequence , Cell Line, Tumor , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , DNA Damage , Deubiquitinating Enzymes , Female , Humans , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Stability , Proto-Oncogene Proteins c-mdm2/metabolism
13.
J Gastroenterol Hepatol ; 29(7): 1427-34, 2014.
Article in English | MEDLINE | ID: mdl-24612089

ABSTRACT

BACKGROUND: We recently showed that miR-494 was downregulated in gastric carcinoma (GC). The objectives of this study were to determine the role of miR-494 in GC malignancy and to identify its target genes. METHODS: Real-time polymerase chain reaction was employed to quantify the expression level of miR-494 and c-myc in gastric cancer tissues. Bioinformatics was used to predict the downstream target genes of miR-494, which were confirmed by luciferase and RNA immunoprecipitation assays. Cell functional analyses and a xenograft mouse model were used to evaluate the role of miR-494 in malignancy. RESULTS: miR-494 was downregulated in human GC tissues and in GC cells and was negatively correlated with c-myc expression. High level of c-myc or low level of miR-494 correlated with poor prognosis. The miR-494-binding site in the c-myc 3' untranslated region was predicted using TargetScan and was confirmed by the luciferase assay. Additionally, c-myc and miR-494 were enriched in coimmunoprecipitates with tagged Argonaute2 proteins in cells overexpressing miR-494. Furthermore, a miR-494 mimic significantly downregulated endogenous c-myc expression, which may contribute to the delayed G1/S transition, decreased synthesis phase bromodeoxyuridine incorporation, and impaired cell growth and colony formation; on the other hand, treatment with a miR-494 inhibitor displayed the opposite effects. Reduced tumor burden and decreased cell proliferation were observed following the delivery of miR-494 into xenograft mice. CONCLUSION: miR-494 is downregulated in human GC and acts as an anti-oncogene by targeting c-myc. miR-494 plays a role in the pathogenesis of gastric cancer in a recessive fashion.


Subject(s)
MicroRNAs/physiology , Molecular Targeted Therapy , Proto-Oncogene Proteins c-myc/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , 3' Untranslated Regions , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Mice, SCID , MicroRNAs/metabolism , Neoplasm Transplantation , Proto-Oncogene Proteins c-myc/genetics , Stomach Neoplasms/pathology
14.
Eur Arch Otorhinolaryngol ; 271(1): 171-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23625387

ABSTRACT

Increased expression of aldehyde dehydrogenase 1 (ALDH1) has recently been reported in several cancers. However, whether member A1 of aldehyde dehydrogenase 1 (ALDH1A1) is involved in the formation of nasopharyngeal carcinoma (NPC) remains unknown. To investigate the expression of ALDH1A1 in NPC and its association with the tumorigenesis of NPC, we examined the expression of ALDH1A1 in NPC specimens using immunohistochemistry (IHC), quantitative RT-PCR (qRT-PCR) and Western blot. Moreover, we sorted ALDH1A1(high) cells from NPC cell line CNE-2 by flow cytometry and examined the expression of primitive embryonic stem cell markers OCT4, SOX2 and Nanog. Finally, we investigated the capacities of growth, proliferation, colony- formation and tumorigenesis of ALDH1A1(high) cells in vitro and in vivo. We found ALDH1A1 was significantly increased in human NPC samples via IHC, qRT-PCR and Western blot (p < 0.05). ALDH1A1(high) cells sorted from NPC cell line CNE-2 by flow cytometry had higher expression of primitive embryonic stem cell markers OCT4, SOX2 and Nanog, and showed enhanced capacities of growth, proliferation, colony formation and tumorigenesis in vitro and in vivo when compared with ALDH1A1(low) cells (p < 0.05). Our findings indicated that increased expression of ALDH1A1 in NPC was associated with enhanced invasiveness.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Aldehyde Dehydrogenase 1 Family , Animals , Carcinogenicity Tests , Cell Proliferation , Flow Cytometry , Immunohistochemistry , Mice , Mice, Nude , Neoplasm Invasiveness , Retinal Dehydrogenase , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
15.
J Vasc Surg ; 57(6): 1645-56, 1656.e1-3, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23332241

ABSTRACT

OBJECTIVE: The molecular mechanism underlying how hypertension with increased norepinephrine (NE) accelerates vascular remodeling is unknown. The present study examined the hypothesis that the additive effects of mechanical stretch stress (SS) and NE on vascular remodeling are mediated by α1-adrenergic receptors (α1-ARs). METHODS: In vitro quiescent mouse vascular smooth muscle cells were cultivated on a flexible membrane and treated by mechanical SS (10% elongation) with or without NE (10(-7) mol/L) in the absence or presence of prazosin, a selective antagonist of α1-ARs (Praz; 10(-7) mol/L). In vivo mouse vena cava segments were grafted into carotid arteries, the mice were treated by prazosin (1 mg/kg/d, intraperitoneally) or saline for 2 weeks and 4 weeks, and wall thickness of the vein grafts was quantified. RESULTS: Mechanical SS could induce Gαq translocation; increase expression of α1B-ARs, α1D-ARs, and Ki67; and rapidly activate extracellular signal-regulated kinases (ERKs) compared with negative controls (P < .05). However, the peak levels of ERK activation and Ki67 expression in vascular smooth muscle cells were stimulated by combining SS and NE (ratio of phosphorylated ERK [pERK]/ß-actin and Ki67 positive rates, SS+NE [1.07 ± 0.04 and 73% ± 3%]; SS [0.83 ± 0.07 and 53% ± 2%]; NE [0.63 ± 0.11 and 42% ± 2%]), which could be partially inhibited by prazosin (ratio of pERK/ß-actin and Ki67 positive rates, SS+NE+Praz [0.83 ± 0.08 and 40% ± 7% vs SS+NE; P < .05], SS+Praz [0.60 ± 0.04 and 26% ± 2% vs SS; P < .05], NE+Praz [0.32 ± 0.12 and 23% ± 2% vs NE; P < .05]) or small interfering RNAs of α1B-ARs and α1D-ARs (P < .05 vs siRNA control). Significantly increased wall thickness was seen in the vein grafts (VG2W, 39.20 ± 3.10 µm; VG4W, 60.35 ± 4.94 µm) compared with control veins (negative controls, 9.90 ± 0.38 µm; P < .05). The effect was partially inhibited by prazosin (VGP2W, 26.22 ± 1.84 µm, and VGP4W, 42.17 ± 1.75 µm vs VG2W and VG4W; P < .05). CONCLUSIONS: These results suggest that α1-ARs may partially mediate the intracellular signals induced by mechanical SS with or without NE via Gαq protein/ERKs pathway triggering increased proliferation of vascular smooth muscle cells and leading to accelerated neointima formation of vein grafts.


Subject(s)
Atherosclerosis/etiology , Cell Proliferation , Muscle, Smooth, Vascular/cytology , Norepinephrine/physiology , Receptors, Adrenergic, alpha-1/physiology , Stress, Mechanical , Veins/transplantation , Animals , Mice , Mice, Inbred C57BL , Time Factors
16.
World J Surg Oncol ; 11: 161, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23866030

ABSTRACT

BACKGROUND: Although many studies have indicated that high-mobility group box 1 protein (HMGB1) is associated with oncogenesis and a worse prognosis, the prognostic value of HMGB1 in gastric cancer (GC) remains unclear. In the present work, we aimed to evaluate the role of HMGB1 in GC and examined whether aberrant expression of both HMGB1 and vascular endothelial growth factor C (VEGF-C) increased the malignant potential of GC. METHODS: A total of 166 GC patients and 32 normal subjects were enrolled. HMGB1 and VEGF-C expression was detected by tissue microarrays (TMAs) and immunohistochemical staining. The correlation between HMGB1 and VEGF-C expression and their relationships with clinicopathological GC variables were examined. Univariate and multivariate analyses were performed using the Cox proportional hazard model to predict the factors related to the patients' overall survival rates. RESULTS: HMGB1 and VEGF-C expression were observed in 81 (48.80%) and 88 (53.01%) tumors, respectively, significantly higher than the rates among the corresponding controls. In addition, HMGB1 and VEGF-C expression were positively correlated (R2 = 0.972). HMGB1 expression was also closely associated with tumor size, pT stage, nodal status, metastasis status, TNM stage, and poor prognosis. Multivariate survival analysis indicated that patients with HMGB1 and VEGF-C coexpression had the worst prognoses and survival rates (hazard ratio, 2.78; log rank P<0.001). CONCLUSIONS: HMGB1 is commonly expressed in GC. Combined evaluation of HMGB1 and VEGF-C may serve as a valuable independent prognostic factor for GC patients.


Subject(s)
Adenocarcinoma/mortality , HMGB1 Protein/metabolism , Neoplasm Recurrence, Local/mortality , Stomach Neoplasms/mortality , Vascular Endothelial Growth Factor C/metabolism , Adenocarcinoma/secondary , Adenocarcinoma/surgery , Biomarkers, Tumor/metabolism , Case-Control Studies , Female , Follow-Up Studies , Humans , Immunoenzyme Techniques , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/surgery , Neoplasm Staging , Prognosis , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery , Survival Rate , Tissue Array Analysis
17.
Article in English | MEDLINE | ID: mdl-37059013

ABSTRACT

Covalent organic frameworks (COFs) are a burgeoning class of crystalline porous materials with unique properties and have been considered as a promising functional extraction medium in sample pretreatment. In this study, a new methacrylate-bonded COF (TpTh-MA) was well designed and synthesized via the aldehyde-amine condensation reaction, and the TpTh-MA was incorporated into poly (ethylene dimethacrylate) porous monolith by a facile polymerization reaction inside capillary to prepare a novel TpTh-MA monolithic column. The fabricated TpTh-MA monolithic column was characterized with scanning electron microscope, Fourier transform infrared spectrometer, X-ray diffraction, and N2 adsorption-desorption experiments. Then, the homogeneous porous structure, good permeability and high mechanical stability of TpTh-MA monolithic column was used as separation and enrichment media of capillary microextraction, which was coupled with high-performance liquid chromatography fluorescence detection for online enrichment and analysis of trace estrogens. The main experimental parameters influencing the extraction efficiency were systematically investigated. The adsorption mechanism for three estrogens was also explored and discussed based on hydrophobic effect, π-π affinity and hydrogen bonding interaction, which contributed to its strong recognition affinity to target compounds. The enrichment factors of the TpTh-MA monolithic column micro extraction method for the three estrogens were 107-114, indicating a significant preconcentration ability. Under optimal conditions, a new online analysis method was developed and exhibited good sensitivity and wide linearity range of 0.25-100.0 µg·L-1 with a coefficient of determination (R2) higher than 0.9990 and a low limit of detection with 0.05-0.07 µg·L-1. The method was successfully applied for online analysis of three estrogens of milk and shrimp samples and the recoveries obtained from spiking experiments were in range of 81.4-113% and 77.9-111%, with the relative standard deviations of 2.6-7.9% and 2.1-8.3% (n = 5), respectively. The results revealed the great potential for the application of the COFs-bonded monolithic column in the field of sample pretreatment.


Subject(s)
Metal-Organic Frameworks , Estrogens , Polymers/chemistry , Chromatography, High Pressure Liquid/methods , Methacrylates/chemistry
18.
Se Pu ; 40(2): 109-122, 2022 Feb 08.
Article in Zh | MEDLINE | ID: mdl-35080157

ABSTRACT

Imine covalent organic frameworks (I-COFs), including imine-linked COFs and hydrazone-linked COFs, are a new type of crystalline porous organic materials constructed by the condensation of organic monomers by the Schiff-base reaction. Because they are composed of lightweight elements linked by strong covalent bonds, I-COF materials possess the advantages of low skeleton density, large surface area, high porosity, abundant monomer species, controllable pore size, functionalized structure, diverse synthetic methods, excellent adsorption performance, outstanding physical and chemical stabilities, etc. In recent years, interest in the field of I-COFs has increased tremendously because of their exceptional performance and broad applications in gas storage, gas separation, catalysis, sensing, photoelectric materials, sample pretreatment, drug delivery, and other fields. To date, imine bonds are one of the most widely used covalent bonds in COFs, and represent one of the most important ways to obtain I-COFs with excellent chemical stabilities. The synthesis methods for I-COFs include solvothermal synthesis, microwave synthesis, mechanochemical grinding synthesis, and room-temperature synthesis methods. Solvothermal synthesis is the most extensively used method for the production of I-COFs with high specific surface areas and good thermal stabilities. The microwave synthesis method is conducive to the rapid synthesis of COFs in industry, providing a more time-saving, simpler, and safer route for large-scale preparation of I-COFs. The mechanochemical grinding synthesis of porous solids has gained importance as an alternative to conventional solvothermal synthesis, because the process is quick, environment-friendly, and potentially scalable. The room-temperature method is characterized by mild reaction conditions and rapid reactions. It is an energy-saving, economic, safe, and green synthesis method, which has emerged as a hot spot in the preparation of I-COFs in recent years. Research progress over the past years on the application of I-COFs in the field of materials science has undoubtedly established the basis of its application in analytical chemistry. Owing to the excellent physical and chemical properties of I-COF materials, they are suitable for use as separation and enrichment media for trace target compounds in complex samples. The high specific surface area and porosity, extended conjugate network skeleton, and π-electron-rich nature of the materials endow it with a high adsorption capacity. These materials are highly enriched in target analytes by π-π interactions, acid-base interactions, donor-acceptor interactions, hydrogen bonding, hydrophobic interactions, and other intermolecular interactions. Precise control of the microporous structure of I-COFs was obtained by controlling the chain length, geometric structure, doping elements, and substituent groups of the organic monomers. Selective enrichment of target trace substances was achieved by modifying the groups of I-COFs based on the principle of host guest adaptation, molecular sieving, or microporous filling effect. At present, research on the synthesis of I-COF materials is in the stage of rapid development, and many I-COFs with excellent properties and great application potential have been synthesized, allowing widespread application of I-COFs in sample pretreatment medium. This review summarizes the current state-of-the-art on the main types and synthetic methods of I-COFs, as well as the applications of I-COFs in solid-phase extraction, magnetic solid-phase extraction, dispersive solid-phase extraction, and solid-phase microextraction. The prospects of I-COFs in sample pretreatment are also presented.

19.
Nat Commun ; 12(1): 5919, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635651

ABSTRACT

Abnormal activation of epidermal growth factor receptor (EGFR) drives non-small cell lung cancer (NSCLC) development. EGFR mutations-mediated resistance to tyrosine-kinase inhibitors (TKIs) is a major hurdle for NSCLC treatment. Here, we show that F-box protein FBXL2 targets EGFR and EGFR TKI-resistant mutants for proteasome-mediated degradation, resulting in suppression of EGFR-driven NSCLC growth. Reduced FBXL2 expression is associated with poor clinical outcomes of NSCLC patients. Furthermore, we show that glucose-regulated protein 94 (Grp94) protects EGFR from degradation via blockage of FBXL2 binding to EGFR. Moreover, we have identified nebivolol, a clinically used small molecule inhibitor, that can upregulate FBXL2 expression to inhibit EGFR-driven NSCLC growth. Nebivolol in combination with osimertinib or Grp94-inhibitor-1 exhibits strong inhibitory effects on osimertinib-resistant NSCLC. Together, this study demonstrates that the FBXL2-Grp94-EGFR axis plays a critical role in NSCLC development and suggests that targeting FBXL2-Grp94 to destabilize EGFR may represent a putative therapeutic strategy for TKI-resistant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , F-Box Proteins/genetics , Lung Neoplasms/genetics , Membrane Glycoproteins/genetics , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , ErbB Receptors/genetics , ErbB Receptors/metabolism , F-Box Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Membrane Glycoproteins/metabolism , Mice , Mice, Nude , Nebivolol/pharmacology , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Survival Analysis , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
20.
Cardiovasc Res ; 115(1): 230-242, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30107531

ABSTRACT

Aims: Long non-coding RNAs (lncRNAs) have been shown to regulate numerous processes in the human genome, but the function of these transcripts in vascular aging is largely unknown. We aim to characterize the expression of lncRNAs in endothelial aging and analyse the function of the highly conserved lncRNA H19. Methods and results: H19 was downregulated in endothelium of aged mice. In human, atherosclerotic plaques H19 was mainly expressed by endothelial cells and H19 was significantly reduced in comparison to healthy carotid artery biopsies. Loss of H19 led to an upregulation of p16 and p21, reduced proliferation and increased senescence in vitro. Depletion of H19 in aortic rings of young mice inhibited sprouting capacity. We generated endothelial-specific inducible H19 deficient mice (H19iEC-KO), resulting in increased systolic blood pressure compared with control littermates (Ctrl). These H19iEC-KO and Ctrl mice were subjected to hindlimb ischaemia, which showed reduced capillary density in H19iEC-KO mice. Mechanistically, exon array analysis revealed an involvement of H19 in IL-6 signalling. Accordingly, intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were upregulated upon H19 depletion. A luciferase reporter screen for differential transcription factor activity revealed STAT3 as being induced upon H19 depletion and repressed after H19 overexpression. Furthermore, depletion of H19 increased the phosphorylation of STAT3 at TYR705 and pharmacological inhibition of STAT3 activation abolished the effects of H19 silencing on p21 and vascular cell adhesion molecule 1 expression as well as proliferation. Conclusion: These data reveal a pivotal role for the lncRNA H19 in controlling endothelial cell aging.


Subject(s)
Carotid Artery Diseases/metabolism , Cellular Senescence , Endothelial Cells/metabolism , Ischemia/metabolism , Muscle, Skeletal/blood supply , RNA, Long Noncoding/metabolism , STAT3 Transcription Factor/metabolism , Animals , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Case-Control Studies , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Disease Models, Animal , Endothelial Cells/pathology , Female , Hindlimb , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Ischemia/genetics , Ischemia/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic , Phosphorylation , Plaque, Atherosclerotic , RNA, Long Noncoding/genetics , Signal Transduction , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL