Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
Add more filters

Publication year range
1.
Support Care Cancer ; 32(7): 456, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916656

ABSTRACT

PURPOSE: To evaluate the quality of guidelines on the pancreatic perioperative enhanced recovery after surgery both domestically and internationally, providing reference and reference for clinical practice. METHODS: Systemically retrieved in the guideline websites, professional association websites and databases, such as up to date, BMJ Best Practice, PubMed, Embase, The Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), Wan Fang Data, China Science and Technology Journal Database(VIP), China Biology Medicine disc (CBMdisc), Medlive, Guidelines International Network(GIN), National Guideline Clearinghouse(NGC), National Institute for Health and Care Excellence(NICE), Registered Nurses Association of Ontario(RNAO), Scottish Intercollegiate Guidelines Network(SIGN), Joanna Briggs Institute Library(JBI), including guidelines and expert consensus on enhanced postsurgical recovery in pancreatic surgery published as of December 20, 2023. The Appraisal of Guidelines for Research and Evaluation II(AGREE II) tool was applied to evaluate the quality of the guidelines by four assessors. RESULTS: This study included seven guidelines, all of which were rated as Grade B in terms of quality, with ICC coefficients ranging from 0.752 to 0.884, indicating a high level of consistency. CONCLUSION: When formulating guidelines in the future, it is recommended to use AGREE II as a reference, emphasizing the standardization of the guideline development process and methods, fully considering patients' values and preferences, focusing on the applicability of the guidelines, and striving to create high-quality evidence-based recommendations.


Subject(s)
Enhanced Recovery After Surgery , Practice Guidelines as Topic , Humans , Enhanced Recovery After Surgery/standards , Perioperative Care/standards , Perioperative Care/methods , Pancreas/surgery
2.
Environ Res ; 255: 119173, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763280

ABSTRACT

The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.


Subject(s)
Environmental Pollutants , Fishes , Mammals , Animals , Environmental Pollutants/toxicity , Bone and Bones/drug effects , Biological Evolution , Vertebrates
3.
Bull Environ Contam Toxicol ; 112(2): 34, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342962

ABSTRACT

To understand the underlying molecular mechanisms, mouse bone marrow mesenchymal stem cells (BMSCs) and zebrafish embryos were exposed to the control group and Tributyltin (TBT) group (10 ng/L, environmental concentration) for 48 h, respectively. The expression profiles of RNAs were investigated using whole-transcriptome analysis in mouse BMSCs or zebrafish embryos after TBT exposure. For mouse BMSCs, the results showed 2,449 differentially expressed (DE) mRNAs, 59 DE miRNAs, 317 DE lncRNAs, and 15 circRNAs. Similarly, for zebrafish embryos, the results showed 1,511 DE mRNAs, 4 DE miRNAs, 272 DE lncRNAs, and 28 circRNAs. According to KEGG pathway analysis showed that DE RNAs were mainly associated with immune responses, signaling, and cellular interactions. Competing endogenous RNA (ceRNA) network analysis revealed that the regulatory network of miRNA-circRNA constructed in zebrafish embryos was more complex compared to that of mouse BMSCs.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , Trialkyltin Compounds , Animals , Mice , Zebrafish/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , Mesenchymal Stem Cells/metabolism
4.
Bull Environ Contam Toxicol ; 112(2): 36, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353741

ABSTRACT

Micro and nanoplastics (MNPs) have attracted growing global research attention due to their distinct environmental impacts, addressing escalating concerns. The diverse materials, sizes, and shapes of MNPs result in a range of environmental impacts. Size, a crucial characteristic of MNPs, influences their environmental behavior, affecting processes like migration, sedimentation, aggregation, and adsorption. Moreover, size modulates the biodistribution and toxicity of MNPs in aquatic organisms. This review delves into the comprehensive impacts of plastic size, with a primary focus on environmental behavior and toxic effects. Ultimately, this review emphasizes the ecological implications of MNP size, laying a foundation for future research in this field.


Subject(s)
Microplastics , Microplastics/toxicity , Tissue Distribution , Adsorption
5.
Blood ; 138(6): 452-463, 2021 08 12.
Article in English | MEDLINE | ID: mdl-33728448

ABSTRACT

Current prognostic scoring systems based on clinicopathologic variables are inadequate in predicting the survival and treatment response of extranodal natural killer/T-cell lymphoma (ENKTL) patients undergoing nonanthracyline-based treatment. We aimed to construct a classifier based on single-nucleotide polymorphisms (SNPs) for improving predictive accuracy and guiding clinical decision making. Data from 722 patients with ENKTL from international centers were analyzed. A 7-SNP-based classifier was constructed using LASSO Cox regression in the training cohort (n = 336) and further validated in the internal testing cohort (n = 144) and in 2 external validation cohorts (n = 142 and n = 100). The 7-SNP-based classifier showed good prognostic predictive efficacy in the training cohort and the 3 validation cohorts. Patients with high- and low-risk scores calculated by the classifier exhibited significantly different progression-free survival (PFS) and overall survival (OS) (all P < .001). The 7-SNP-based classifier was further proved to be an independent prognostic factor by multivariate analysis, and its predictive accuracy was significantly better than clinicopathological risk variables. Application of the 7-SNP-based classifier was not affected by sample types. Notably, chemotherapy combined with radiotherapy significantly improved PFS and OS vs radiotherapy alone in high-risk Ann Arbor stage I patients, whereas there was no statistical difference between the 2 therapeutic modalities among low-risk patients. A nomogram was constructed comprising the classifier and clinicopathological variables; it showed remarkably better predictive accuracy than either variable alone. The 7-SNP-based classifier is a complement to existing risk-stratification systems in ENKTL, which could have significant implications for clinical decision making for patients with ENKTL.


Subject(s)
Lymphoma, Extranodal NK-T-Cell , Polymorphism, Single Nucleotide , Disease-Free Survival , Female , Humans , Lymphoma, Extranodal NK-T-Cell/genetics , Lymphoma, Extranodal NK-T-Cell/mortality , Lymphoma, Extranodal NK-T-Cell/radiotherapy , Male , Middle Aged , Survival Rate
6.
Environ Res ; 224: 115511, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36801235

ABSTRACT

In the context of global climate change, ocean acidification and warming are becoming increasingly serious. Adding carbon sinks in the ocean is an important part of efforts to mitigate climate change. Many researchers have proposed the concept of a fisheries carbon sink. Shellfish-algal systems are among the most important components of fisheries carbon sinks, but there has been limited research on the impact of climate change on shellfish-algal carbon sequestration systems. This review assesses the impact of global climate change on shellfish-algal carbon sequestration systems and provides a rough estimate of the global shellfish-algal carbon sink capacity. This review evaluates the impact of global climate change on shellfish-algal carbon sequestration systems. We review relevant studies that have examined the effects of climate change on such systems from multiple levels, perspectives, and species. There is an urgent need for more realistic and comprehensive studies given expectations about the future climate. Such studies should provide a better understanding of the mechanisms by which the carbon cycle function of marine biological carbon pumps may be affected in realistic future environmental conditions and the patterns of interaction between climate change and ocean carbon sinks.


Subject(s)
Carbon Sequestration , Seawater , Climate Change , Fisheries , Hydrogen-Ion Concentration , Shellfish , Carbon , Ecosystem
7.
Graefes Arch Clin Exp Ophthalmol ; 261(5): 1381-1389, 2023 May.
Article in English | MEDLINE | ID: mdl-36565329

ABSTRACT

PURPOSE: The purpose of this study is to evaluate clinical outcomes of autoimmune retinopathy (AIR) in the patients treated with intravitreal dexamethasone implant (IDI). METHOD: Twenty-one eyes of 11 AIR patients treated with at least 1 injection of IDI were retrospectively reviewed. Clinical outcomes before and after treatment, including best corrected visual acuity (BCVA), optic coherence tomography (OCT), fundus autofluorescence (FAF), full-field electroretinography (ff-ERG), and visual field (VF) at last visit within 6 and/or 12 months, were recorded. RESULTS: Among all the patients, 3 had cancer-associated retinopathy (CAR) and 8 had non-paraneoplastic-AIR (npAIR) with mean followed up of 8.52 ± 3.03 months (range 4-12 months). All patients achieved improved or stable BCVA within 6 and/or 12 months after the treatment. Cystoid macular edema (CME) in 2 eyes and significant retinal inflammation in 4 eyes were markedly resolved after single injection. Central retinal thickness (CFT) in all eyes without CME, ellipsoid zone (EZ) on OCT in 71.4% of eyes, ERG response in 55% of eyes, and VF in 50% of eyes were stable or improved within 6 months after treatment. At last visit within 12 months, both BCVA and CFT remained stable in the eyes treated with either single or repeated IDI; however, progression of EZ loss and damage of ERG response occurred in some patients with single IDI. CONCLUSION: Clinical outcomes, including BCVA and parameters of OCT, ERG, and VF, were stable or improved after IDI in a majority of AIR patients. Local treatment of AIR with IDI was a good option to initiate the management or an alternative for the patients' refractory to the systemic therapy but with limited side effect.


Subject(s)
Autoimmune Diseases , Diabetic Retinopathy , Macular Edema , Retinal Diseases , Humans , Dexamethasone , Glucocorticoids , Autoimmune Diseases/diagnosis , Autoimmune Diseases/drug therapy , Autoimmune Diseases/complications , Retinal Diseases/diagnosis , Retinal Diseases/drug therapy , Retinal Diseases/complications , Retrospective Studies , Tomography, Optical Coherence/methods , Macular Edema/diagnosis , Macular Edema/drug therapy , Macular Edema/etiology , Retina , Intravitreal Injections , Drug Implants/therapeutic use , Diabetic Retinopathy/complications
8.
J Environ Manage ; 345: 118886, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37673008

ABSTRACT

Potassium ferrate (K2FeO4) has been extensively employed to promote short-chain fatty acids (SCFAs) production from anaerobic fermentation of waste activated sludge (WAS) because of its potent oxidizing property and formation of alkaline hydrolyzed products (potassium hydroxide, KOH and ferric hydroxide, Fe(OH)3). However, whether K2FeO4 actually works as dual functions of both an oxidizing agent and an alkalinity enhancer during the anaerobic fermentation process remains uncertain. This study aims to identify the contributions of hydrolyzed products of K2FeO4 on SCFAs production. The results showed that K2FeO4 did not execute dual functions of oxidization and alkalinity in promoting SCFAs production. The accumulation of SCFAs using K2FeO4 treatment (183 mg COD/g volatile suspended solids, VSS) was less than that using either KOH (192 mg COD/g VSS) or KOH & Fe(OH)3 (210 mg COD/g VSS). The mechanism analysis indicated that the synergistic effects caused by oxidization and alkalinity properties of K2FeO4 did not happen on solubilization, hydrolysis, and acidogenesis stages, and the inhibition effect caused by K2FeO4 on methanogenesis stage at the initial phase was more severe than that of its hydrolyzed products. It was also noted that the inhibition effects of K2FeO4 and its hydrolyzed products on the methanogenesis stage could be relieved during a longer sludge retention time, and the final methane yields using KOH or KOH & Fe(OH)3 treatment were higher than that using K2FeO4, further confirming that dual functions of K2FeO4 were not obtained. Therefore, K2FeO4 may not be an alternative strategy for enhancing the production of SCFAs from WAS compared to its alkaline hydrolyzed products. Regarding the strong oxidization property of K2FeO4, more attention could be turned to the fates of refractory organics in the anaerobic fermentation of WAS.


Subject(s)
Potassium Compounds , Sewage , Fatty Acids, Volatile
9.
Environ Geochem Health ; 45(9): 6853-6867, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36566469

ABSTRACT

This study systematically analyzed the contents, compositions, and sources of polycyclic aromatic hydrocarbons (PAHs) in river sediments near an important energy and chemical base in northwest China. In addition, their possible adverse effects on the ecology and human health were assessed. The PAH concentrations in this study area ranged from 2641.28 to 16783.72 (ng/g dw). PAHs of medium molecular weight (3-ring and 4-ring) showed the largest proportion, followed by PAHs of higher molecular weight (5-ring and 6-ring). The results of molecular diagnostic ratios and principal component analysis revealed that PAHs in the region have complex sources, with incomplete combustion of local fossil fuels and traffic exhaust factors being the main sources. The total toxic equivalent concentration of PAHs varied from 10.05 to 760.26 ng/g, and according to the sediment quality guidelines, PAHs have high potential ecological risk in the lower reaches of the river. The mean effect range-median quotient for the region was 0.46, and the combined ecological risk was at moderate to high levels (21% probability of toxicity). The lifetime carcinogenic risks for adults and children exposed to PAHs were 2.95 × 10-3 and 1.87 × 10-2, respectively, which are much higher than the limit of 10-4, indicating moderate to high potential cancer risks. Therefore, the local government should consider taking some environmental remediation measures. This study can provide theoretical support for pollution prevention measures and ecological restoration strategies for rivers in resource-rich areas.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Child , Humans , Coal/analysis , Rivers/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Risk Assessment , China
10.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(5): 838-842, 2023 Oct 18.
Article in Zh | MEDLINE | ID: mdl-37807737

ABSTRACT

OBJECTIVE: To evaluate the diagnostic value of dynamic contrast enhanced (DCE) of multiparametric magnetic resonance imaging (mpMRI) for prostate imaging reporting and data system (PI-RADS) 4 lesion in prostate peripheral zone. METHODS: The clinical data of patients with PI-RADS 4 lesion in prostate peripheral zone who underwent prostate biopsy from January 2018 to September 2021 in Peking University First Hospital were retrospectively included. According to DCE status, the patients were divided into the conventional group (4 points for diffusion-weighted imaging) and the comprehensive group (3 points for diffusion-weighted imaging + 1 point for DCE positive). Pearson's chi-square test or Fisher's exact test for comparison was conducted between prostate cancer and non-cancer patients. Univariate and multivariate Logistic regression were performed to analyze the correlation of positive biopsy with age, total prostate specific antigen (PSA), free PSA/total PSA (f/tPSA), prostate volume (PV), PSA density (PSAD) and DCE status. RESULTS: Among the 267 prostate biopsy patients, 217 cases were diagnosed as prostatic cancer (81.27%) and 50 cases were non-cancer (18.73%). Statistical analysis between the prostatic cancer group and the non-cancer group showed that there were significant differences in age, tPSA, PV and PSAD (all P < 0.05), but no significant differences in f/tPSA between the two groups. About different PI-RADS 4 lesion groups, the conventional group and the comprehensive group showed significant difference in biopsy results (P=0.001), and the conventional group had a higher positive rate. The PV of comprehensive group was larger than that of the conventional group. Among the prostate cancer patients diagnosed by biopsy, statistical analysis between the conventional group and comprehensive group showed that there were not significant differences in International Society of Urological Pathology (ISUP) grade and distinguishing clinically significant prostate cancer (all P > 0.05). Logistic univariate analysis showed that the diagnosis of prostate cancer was related to age, tPSA, f/tPSA, PV and DCE group status (all P < 0.05). Multivariate analysis showed that age, tPSA, PV and DCE group status (all P < 0.05) were independent risk factors for the diagnosis of prostatic cancer. CONCLUSION: tPSA, f/tPSA, PV and PSAD are the indicators to improve the diagnosis of prostatic cancer with PI-RADS 4 lesion in peripheral zone lesions. DCE status is worth considering, so that we can select patients for biopsy more accurately, reduce the rate of missed diagnosis of prostate cancer as well as avoid unnecessary prostate puncture.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostate-Specific Antigen , Magnetic Resonance Imaging/methods , Retrospective Studies
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(7): 774-778, 2023 Jul 15.
Article in Zh | MEDLINE | ID: mdl-37529962

ABSTRACT

An 18-day-old male infant was admitted to the hospital due to recurrent hyperkalemia for more than 10 days. The neonate had milk refusal and dyspnea. The blood gas analysis revealed recurrent hyperkalemia, hyponatremia and metabolic acidosis. Adrenocortical hormone replacement therapy was ineffective. Additional tests showed a significant increase in aldosterone levels. Family whole exome sequencing revealed that the infant had compound heterozygous in the SCNNIA gene, inherited from both parents. The infant was diagnosed with neonatal systemic pseudohypoaldosteronism type I. The infant's electrolyte levels were stabilized through treatment with sodium polystyrene sulfonate and sodium supplement. The infant was discharged upon clinical recovery. This study provides a focused description of differential diagnosis of salt-losing syndrome in infants and introduces the multidisciplinary management of neonatal systemic pseudohypoaldosteronism type I.


Subject(s)
Hyperkalemia , Hyponatremia , Pseudohypoaldosteronism , Infant , Infant, Newborn , Humans , Male , Pseudohypoaldosteronism/diagnosis , Pseudohypoaldosteronism/genetics , Hyperkalemia/diagnosis , Hyperkalemia/etiology , Hyponatremia/diagnosis , Diagnosis, Differential
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 989-994, 2023.
Article in Zh | MEDLINE | ID: mdl-37718408

ABSTRACT

A male infant, aged 1 month and 14 days, was admitted to the hospital due to abdominal distension lasting for 2 weeks and worsening for 3 days. The infant had a history of omphalitis. Physical examination revealed severe abdominal distension, prominent abdominal wall veins, hepatosplenomegaly, and massive ascites. There was a slight elevation in liver transaminase levels. Liver ultrasound and CT scans demonstrated the absence of visualization of the intrahepatic segment of the portal vein and the left, middle, and right veins of the liver, indicating occlusion of these vessels, along with surrounding fibrous hyperplasia. The clinical diagnosis was hepatic sinusoidal obstruction syndrome resulting from omphalitis. A large amount of bloody ascites developed after 12 days of hospitalization, resulting in hypovolemic shock and respiratory failure. The infant passed away following the family's decision to discontinue treatment. This article focuses on the diagnostic approach and multidisciplinary management of neonatal-onset hepatic sinusoidal obstruction syndrome, as well as provides insights into the differential diagnosis of hepatomegaly and ascites.

13.
Inorg Chem ; 61(34): 13234-13238, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-35975946

ABSTRACT

Presented here are the synthesis and gas-phase photocatalytic CO2 reduction of an anionic porous Zn-metalated porphyrin metal-organic framework (MOF) induced by an ionic liquid. The desired CO2 affinity and deep conduction band position of the MOF catalyst provide strong kinetic and thermodynamic advantages for photocatalytic CO2 to CH4 conversion with high selectivity (∼70%) in H2O vapor.

14.
Exp Cell Res ; 403(1): 112585, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33811905

ABSTRACT

Cardiomyocytes are particularly prone to lipofuscin accumulation. In the aging heart, lipofuscin accumulation is augmented. This study examined distribution of lipofuscin and senescent cardiomyocytes and evaluated improvement of lipofuscin accumulation and cardiomyocytic senescence of the aging heart after treatment with rapamycin. The results of Schmorl staining, Sudan black staining and autofluorescence detection showed that there was more lipofuscin in the myocardium of the ventricles especially in the left ventricle. The conductive tissue contained less lipofuscin than the myocardium. In the aged hearts, lipofuscin accumulation and senescent cardiomyocytes were increased, and the level of autophagy was reduced. In double staining of Sudan black B and senescence-associated ß-galactosidase, 10%-20% lipofuscin-loaded cardiomyocytes became senescent. All senescent cardiomyocytes contained lipofuscin deposits. After enhancing autophagy with feed of rapamycin for six months, lipofuscin accumulation and senescence of cardiomyocytes were improved in old rats. Colocalization of autophagic structure and lipofuscin as well as electron micrographs showed that some lipofuscin-loaded lysosomes were sequestrated by autophagic structures. This study suggests that rapamycin-enhanced autopahgy is effective for reducing lipofuscinogenesis and promoting degradation of lipofuscin. Therefore, enhancing autophagy is a novel therapy for alleviating lipofuscin accumulation and myocardial senescence.


Subject(s)
Aging/metabolism , Autophagy/physiology , Lysosomes/metabolism , Myocytes, Cardiac/metabolism , Animals , Cells, Cultured , Cellular Senescence/physiology , Male , Myocardium/metabolism , Rats, Sprague-Dawley , Staining and Labeling/methods
15.
Environ Res ; 214(Pt 4): 114202, 2022 11.
Article in English | MEDLINE | ID: mdl-36030922

ABSTRACT

The rise of "new" sequencing technologies and the development of sophisticated bioinformatics tools have dramatically increased the study of the aquaculture microbiome. Microbial communities exist in complex and dynamic communities that play a vital role in the stability of healthy ecosystems. The gut microbiome contributes to multiple aspects of the host's physiological health status, ranging from nutritional regulation to immune modulation. Although studies of the gut microbiome in aquaculture are growing rapidly, the interrelationships between the aquaculture microbiome and its aquatic environment have not been discussed and summarized. In particular, few reviews have focused on the potential mechanisms driving the alteration of the gut microbiome by surrounding aquatic environmental factors. Here, we review current knowledge on the host gut microbiome and its interrelationship with the microbiome of the surrounding environment, mainly including the main methods for characterizing the gut microbiome, the composition and function of microbial communities, the dynamics of microbial interactions, and the relationship between the gut microbiome and the surrounding water/sediment microbiome. Our review highlights two potential mechanisms for how surrounding aquatic environmental factors drive the gut microbiome. This may deepen the understanding of the interactions between the microbiome and environmental factors. Lastly, we also briefly describe the research gaps in current knowledge and prospects for the future orientation of research. This review provides a framework for studying the complex relationship between the host gut microbiome and environmental stresses to better facilitate the widespread application of microbiome technologies in fisheries and aquaculture.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Aquaculture , Fisheries
16.
J Environ Manage ; 309: 114728, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35180439

ABSTRACT

Real-time evaluation of the fighting activities during a sudden unknown disaster like the COVID-19 pandemic is a critical challenge for control. This study demonstrates that the temporal variations of effluents from hospital sewage treatment facilities can be used as an effective indicator for such evaluation. Taking a typical infection-suffering city in China as an example, we found that there was an obvious decrease in effluent ammonia and COD concentrations in line with the start of city lockdown, and its temporal variations well indicated the major events happened during the pandemic control. Notably, the lagging period between the change point of effluent residual chlorine and the change points of COD and ammonia concentration coincided with a period in which there was a deficiency in local medical resources. In addition, the diurnal behavior of effluents from designated hospitals has varied significantly at different stages of the pandemic development. The effluent ammonia peaks shifted from daytime to nighttime after the outbreak of the COVID-19 pandemic, suggesting a high workload of the designated hospitals in fighting the rapidly emerging pandemic. This work well demonstrates the necessary for data integration at the wastewater-medical service nexus and highlights an unusual role of the effluents from hospital sewage treatment facilities in revealing the status of fighting the pandemic, which helps to control the pandemic.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Hospitals , Humans , Pandemics/prevention & control , SARS-CoV-2 , Sewage
17.
Bull Environ Contam Toxicol ; 108(6): 1001-1005, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35486156

ABSTRACT

In recent years, with the development of the global economy, water pollution has increased. Pollutants migrate, accumulate, and diffuse in aquatic environments. Most of the pollutants eventually enter aquatic organisms. The accumulation of pollutants affects the development and reproduction of organisms, and many pollutants have teratogenic, carcinogenic, and/or mutagenic effects. Aquatic organisms in estuaries and coastal areas are under pressure due to both salinity and pollutants. Among them, salinity, as an environmental factor, may affect the behavior of pollutants in the aquatic environment, causing changes in their toxic effects on fishes. Salinity also directly affects the growth and development of fishes. Therefore, this paper focuses on metals and organic pollutants and discusses the toxic effects of pollutants on fish under different salinities. This research is of great significance to environmental protection and ecological risk assessment of aquatic environments.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Aquatic Organisms , Estuaries , Fishes , Salinity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
18.
Bull Environ Contam Toxicol ; 109(6): 1018-1022, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36318303

ABSTRACT

DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main ingredient in SeaNine-211, a new antifouling agent that replaces organotin compounds to prevent the growth of fouling organisms on board. Biocides from antifoulants can cause problems for marine ecosystems by destroying non-target algal species. This study evaluated the potential adverse effects DCOIT using the Marine Chlorella sp. The concentration of DCOIT were set according to the semi-inhibitory concentrations for acute exposure experiments, and relevant oxidative stress indicators were measured to assess the acute toxic effects. The results showed that the inhibition concentrations (IC50) of DCOIT against Marine Chlorella sp was 2.522 mg/L. The genes related to photosynthesis and antioxidant capacity showed the effect of promoting low concentration and inhibiting high concentration. In addition, based on the ultrastructural observation and the expression analysis of photosynthesis related genes, it was found that DCOIT had a significant effect on plant photosynthesis.


Subject(s)
Biofouling , Chlorella , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Biofouling/prevention & control , Ecosystem , Thiazoles/toxicity
19.
J Toxicol Environ Health A ; 84(1): 20-30, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33016251

ABSTRACT

Tributyltin (TBT), an organotin compound, is hazardous in aquatic ecosystems. However, the mechanisms underlying TBT-induced central nervous system (CNS) toxicity remain to be determined especially in freshwater aquatic vertebrates. The aim of present study was to investigate the effects of chronic exposure to TBT on brain functions in a freshwater teleost the adult wild-type zebrafish (Danio rerio). Fish were exposed to sublethal concentrations of TBT (10, 100 or 300 ng/L) for 6 weeks. The influence of long-term TBT exposure was assessed in the brain of zebrafish with antioxidant related indices including malondialdehyde (MDA) levels and total antioxidant capacity, neurological parameters such as activities of acetylcholinesterase, and monoamine oxidase as well as levels of nitric oxide, dopamine, 5-hydroxytryptamine. In addition indices related to sensitivity of toxic insult such as cytochrome P450 1 regulation and heat shock protein 70 were determined. The regulation of related genes involved in endoplasmic reticulum stress (ERS), apoptosis and Nrf2 pathway were measured. Adverse physiological and biochemical responses were significantly enhanced in a concentration-dependent manner reflecting neurotoxicity attributed to TBT exposure. Our findings provide further insight into TBT-induced toxicity in wild-type zebrafish. and enhance our understanding of the molecular mechanisms underlying TBT-initiated CNS effects.


Subject(s)
Brain/drug effects , Neurotoxins/toxicity , Trialkyltin Compounds/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Brain/physiology , Male , Random Allocation , Stress, Physiological/drug effects , Toxicity Tests, Chronic
20.
Chemistry ; 26(54): 12472-12480, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32578255

ABSTRACT

In this work, pyrazine (A), aminopyrazine (B), quinoxaline (C), and 5,6,7,8-tetrahydroquinoxaline (D) have been screened out among a large number of pyrazine derivatives to construct Hofmann-type metal-organic frameworks (MOFs) Fe(L)[M(CN)4 ] (M=Pt, Pd) with similar 3D pillared-layer structures. X-ray single-crystal diffraction reveals that the alternate linkage between M and FeII ions through cyano bridges forms the 2D extended metal cyanide sheets, and ligands A-D acted as vertical columns to connect the 2D sheets to give 3D pillared-layer structures. Subsequently, a series of bivariate MOFs were constructed by pairwise combination of the four ligands A-D, which were confirmed by 1 H NMR, PXRD, FTIR, and Raman spectroscopy. The results demonstrated that ligand size and crystallization rate play a dominant role in constructing bivariate Hofmann-type MOFs. More importantly, the spin-crossover (SCO) properties of the bivariate MOFs can be finely tuned by adjusting the proportion of the two pillared ligands in the 3D Hofmann-type structures. Remarkably, the spin transition temperatures, Tc ↑ and Tc ↓ of Fe(A)x (B)1-x [Pt(CN)4 ] (x=0 to 1) can be adjusted from 239 to 254 K and from 248 to 284 K, respectively. Meanwhile, the width of the hysteresis loops can be widened from 9 to 30 K. Changing Pt to Pd, the hysteresis loops of Fe(A)x (B)1-x [Pd(CN)4 ] can be tuned from 9 (Tc ↑=215 K, Tc ↓=206 K) to 24 K (Tc ↑=300 K, Tc ↓=276 K). This research provides wider implications in the development of advanced bistable materials, especially in precisely regulating SCO properties.

SELECTION OF CITATIONS
SEARCH DETAIL