Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 596
Filter
Add more filters

Publication year range
1.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776919

ABSTRACT

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Subject(s)
Fungi , Gastrointestinal Microbiome , Mycobiome , Animals , Humans , Male , Mice , Feces/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Genome, Fungal/genetics , Genomics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics , Metagenome , Phylogeny , Female , Adult , Middle Aged
2.
Mol Cell ; 83(7): 1024-1026, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37028413

ABSTRACT

Histone chaperones participate in the biogenesis, transportation, and deposition of histones. They contribute to processes impacted by nucleosomes including DNA replication, transcription, and epigenetic inheritance. In this issue, Carraro et al.1 reveal an interconnected chaperone network and a surprising function of histone chaperone DAXX in de novo deposition of H3.3K9me3.


Subject(s)
Histone Chaperones , Histones , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Nucleosomes/genetics , Molecular Chaperones/genetics , DNA Replication
3.
Mol Cell ; 82(20): 3901-3918.e7, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36206767

ABSTRACT

How cancer-associated chromatin abnormalities shape tumor-immune interaction remains incompletely understood. Recent studies have linked DNA hypomethylation and de-repression of retrotransposons to anti-tumor immunity through the induction of interferon response. Here, we report that inactivation of the histone H3K36 methyltransferase NSD1, which is frequently found in squamous cell carcinomas (SCCs) and induces DNA hypomethylation, unexpectedly results in diminished tumor immune infiltration. In syngeneic and genetically engineered mouse models of head and neck SCCs, NSD1-deficient tumors exhibit immune exclusion and reduced interferon response despite high retrotransposon expression. Mechanistically, NSD1 loss results in silencing of innate immunity genes, including the type III interferon receptor IFNLR1, through depletion of H3K36 di-methylation (H3K36me2) and gain of H3K27 tri-methylation (H3K27me3). Inhibition of EZH2 restores immune infiltration and impairs the growth of Nsd1-mutant tumors. Thus, our work uncovers a druggable chromatin cross talk that regulates the viral mimicry response and enables immune evasion of DNA hypomethylated tumors.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Histone Methyltransferases , Tumor Escape , Animals , Mice , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Chromatin , DNA Methylation , Head and Neck Neoplasms/genetics , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Histones/genetics , Histones/metabolism , Interferons/genetics , Nuclear Proteins/metabolism , Receptors, Interferon/genetics , Retroelements , Tumor Escape/genetics
4.
Nature ; 623(7987): 643-651, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938774

ABSTRACT

In eukaryotes, repetitive DNA sequences are transcriptionally silenced through histone H3 lysine 9 trimethylation (H3K9me3). Loss of silencing of the repeat elements leads to genome instability and human diseases, including cancer and ageing1-3. Although the role of H3K9me3 in the establishment and maintenance of heterochromatin silencing has been extensively studied4-6, the pattern and mechanism that underlie the partitioning of parental H3K9me3 at replicating DNA strands are unknown. Here we report that H3K9me3 is preferentially transferred onto the leading strands of replication forks, which occurs predominantly at long interspersed nuclear element (LINE) retrotransposons (also known as LINE-1s or L1s) that are theoretically transcribed in the head-on direction with replication fork movement. Mechanistically, the human silencing hub (HUSH) complex interacts with the leading-strand DNA polymerase Pol ε and contributes to the asymmetric segregation of H3K9me3. Cells deficient in Pol ε subunits (POLE3 and POLE4) or the HUSH complex (MPP8 and TASOR) show compromised H3K9me3 asymmetry and increased LINE expression. Similar results were obtained in cells expressing a MPP8 mutant defective in H3K9me3 binding and in TASOR mutants with reduced interactions with Pol ε. These results reveal an unexpected mechanism whereby the HUSH complex functions with Pol ε to promote asymmetric H3K9me3 distribution at head-on LINEs to suppress their expression in S phase.


Subject(s)
Gene Silencing , Histones , Long Interspersed Nucleotide Elements , Lysine , S Phase , Humans , DNA Replication , Histones/chemistry , Histones/metabolism , Long Interspersed Nucleotide Elements/genetics , Lysine/metabolism , Methylation
5.
Nature ; 608(7922): 310-316, 2022 08.
Article in English | MEDLINE | ID: mdl-35948715

ABSTRACT

Soft magnetic materials (SMMs) serve in electrical applications and sustainable energy supply, allowing magnetic flux variation in response to changes in applied magnetic field, at low energy loss1. The electrification of transport, households and manufacturing leads to an increase in energy consumption owing to hysteresis losses2. Therefore, minimizing coercivity, which scales these losses, is crucial3. Yet meeting this target alone is not enough: SMMs in electrical engines must withstand severe mechanical loads; that is, the alloys need high strength and ductility4. This is a fundamental design challenge, as most methods that enhance strength introduce stress fields that can pin magnetic domains, thus increasing coercivity and hysteresis losses5. Here we introduce an approach to overcome this dilemma. We have designed a Fe-Co-Ni-Ta-Al multicomponent alloy (MCA) with ferromagnetic matrix and paramagnetic coherent nanoparticles (about 91 nm in size and around 55% volume fraction). They impede dislocation motion, enhancing strength and ductility. Their small size, low coherency stress and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the soft magnetic properties. The alloy has a tensile strength of 1,336 MPa at 54% tensile elongation, extremely low coercivity of 78 A m-1 (less than 1 Oe), moderate saturation magnetization of 100 A m2 kg-1 and high electrical resistivity of 103 µΩ cm.

6.
J Am Chem Soc ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051926

ABSTRACT

A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.

7.
Cancer ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926891

ABSTRACT

BACKGROUND: Phosphatidylinositol 3-kinase (PI3K) inhibitors transformed management of various malignancies. This study preclinically characterized TQ-B3525 (dual PI3Kα/δ inhibitor) and assessed the recommended phase 2 dose (RP2D), safety, efficacy, and pharmacokinetics in relapsed or refractory (R/R) lymphoma or advanced solid tumors (STs). METHODS: Oral TQ-B3525 was given at eight dose levels on a 28-day cycle. Primary end points were dose-limiting toxicity (DLT), maximum tolerated dose (MTD), and safety. RESULTS: TQ-B3525 showed high selectivity and suppressed tumor growth. Between June 12, 2018, and November 18, 2020, 80 patients were enrolled (63 in dose-escalation cohort; 17 in dose-expansion cohort). Two DLTs occurred in two (two of 63, 3.2%) DLT-evaluable patients; MTD was not identified. TQ-B3525 at 20 mg once daily was selected as RP2D. Grade 3 or worse treatment-related adverse events mainly included hyperglycemia (16.3%), neutrophil count decreased (15.0%), and diarrhea (10.0%). Two (2.5%) treatment-related deaths were reported. Sixty patients with R/R lymphoma and 11 advanced STs demonstrated objective response rates of 68.3% and 9.1%, disease control rates of 91.7% and 54.6%, median progression-free survivals of 12.1 and 1.1 months; median overall survivals were not reached. CONCLUSION: TQ-B3525 exhibited rapid absorption and a nearly proportional increase in exposure. Acceptable safety and promising efficacy support further investigation of TQ-B3525 (20 mg once daily) for R/R lymphoma.

8.
Small ; 20(16): e2307523, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38018331

ABSTRACT

Sustained-release drug delivery formulations are preferable for treating various diseases as they enhance and prolong efficacy, minimize adverse effects, and avoid frequent dosing. However, these formulations are associated with poor patient compliance, require trained personnel for administration, and involve harsh manufacturing conditions that compromise drug stability. Here, a self-healing biodegradable porous microneedle (PMN) patch is reported for sustained drug delivery. The PMN patch is fabricated by a cryogenic micromoulding followed by phase separation, leading to formation of interconnected pores on the surface and internals of MNs. The pores with self-healing feature enable the PMNs to load hydrophilic drugs with different molecular weights in a mild and efficient manner. The healed PMNs can easily penetrate into the skin under press and detach from the supporting substrate under shear, thereby acting as implantable drug reservoirs for achieving sustained release of drugs for at least 40 days. One-time administration of desired therapeutics using the sustained-release healed PMNs resulted in stronger and longer-lasting efficacy in mitigating psoriasis and eliciting immunity compared to conventional methods with multiple administrations. The self-healing PMN patch for self-administrated and long-acting drug delivery can eventually improve medication adherence in prophylactic and therapeutic protocols that typically require frequent dosages.


Subject(s)
Phase Separation , Skin , Humans , Delayed-Action Preparations/pharmacology , Administration, Cutaneous , Porosity , Drug Delivery Systems/methods , Needles
9.
Small ; : e2311249, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482932

ABSTRACT

Host-guest catalyst provides new opportunities for targeted applications and the development of new strategies for preparing host-guest catalysts is highly desired. Herein, an in situ solvent-free approach is developed for implanting ZrW2 O7 (OH)2 (H2 O)2 nanorods (ZrW-NR) in nitro-functionalized UiO-66(Zr) (UiO-66(Zr)-NO2 ) with hierarchical porosity, and the encapsulation of ZrW-NR enables the as-prepared host-guest catalyst remarkably enhanced catalytic performance for both for oxidative desulfurization (ODS) and acetalization reactions. ZrW-NR@UiO-66(Zr)-NO2 can eliminate 500 ppm sulfur within 9 min at 40 °C in ODS, and can transform 5.6 mmol benzaldehyde after 3 min at room temperature in acetalization reaction. Its turnover frequencies reach 72.3 h-1 at 40 °C for ODS which is 33.4 times higher than UiO-66(Zr)-NO2 , and 28140 h-1 for acetalization which is the highest among previous reports. Density functional theory calculation result indicates that the W sites in ZrW-NR can decompose H2 O2 to WVI -peroxo intermediates that contribute to catalytic activity for the ODS reaction. This work opens a new solvent-free approach for preparing MOFs-based host-guest catalysts to upgrade their redox and acid performance.

10.
Ann Hematol ; 103(3): 793-801, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37953379

ABSTRACT

The anti-PD-1 antibodies have been reported to show a striking effect in relapsed and refractory(R/R) classical Hodgkin lymphoma (cHL), however, there is still limited real-world data assessing the role of anti-PD-1 antibody monotherapy in early-stage cHL. In this retrospective analysis, we reported the effectiveness and safety of tislelizumab monotherapy in the first-line therapy of early-stage cHL. Twenty-three consecutive patients (10 males and 13 females) with previously untreated stage I A-II B cHL were included. At interim evaluation after 2 doses of tislelizumab monotherapy, 11 of 23 patients (47.8%) achieved complete response (CR). At the end of tislelizumab monotherapy (EOTM), objective response was observed in 22 of 23 patients (95.7%), with CR in 16 patients (69.6%). Among six patients with PR-EOTM, two patients underwent 4 cycles of ABVD chemotherapy and one patient underwent 4 cycles of tislelizumab plus AVD. One patient who developed progressive disease (PD) after 4 doses of tislelizumab subsequently underwent 4 cycles of ABVD chemotherapy. Except for four patients with CR-EOTM, consolidative radiotherapy was given to 19 patients. All patients obtained CR at the end of all treatments. With a median follow-up time of 21.3 months (range, 6.9-32.7 months), the estimated 2-year PFS rate and 2-year OS rate were 95.65% and 100%, respectively. Except for grade 3 lymphocyte count decreased, no other grade 3/4 TRAE was observed. In addition, no serious AE was reported. Our preliminary data observed that tislelizumab monotherapy was safe and highly effective in previously untreated early-stage cHL.


Subject(s)
Antibodies, Monoclonal, Humanized , Hodgkin Disease , Male , Female , Humans , Hodgkin Disease/therapy , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols , Bleomycin/therapeutic use , Vinblastine , Dacarbazine , Doxorubicin
11.
Ann Hematol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012515

ABSTRACT

INTRODUCTION: Lymphoma tissue biopsies cannot fully capture genetic features due to accessibility and heterogeneity. We aimed to assess the applicability of circulating tumor DNA (ctDNA) for genomic profiling and disease surveillance in classic Hodgkin lymphoma (cHL), primary mediastinal large B-cell lymphoma (PMBCL), and diffuse large B-cell lymphoma (DLBCL). METHODS: Tumor tissue and/or liquid biopsies of 49 cHLs, 32 PMBCLs, and 74 DLBCLs were subject to next-generation sequencing targeting 475 genes. The concordance of genetic aberrations in ctDNA and paired tissues was investigated, followed by elevating ctDNA-based mutational landscapes and the correlation between ctDNA dynamics and radiological response/progression. RESULTS: ctDNA exhibited high concordance with tissue samples in cHL (78%), PMBCL (84%), and DLBCL (78%). In cHL, more unique mutations were detected in ctDNA than in tissue biopsies (P < 0.01), with higher variant allele frequencies (P < 0.01). Distinct genomic features in cHL, PMBCL, and DLBCL, including STAT6, SOCS1, BTG2, and PIM1 alterations, could be captured by ctDNA alone. Prevalent PD-L1/PD-L2 amplifications were associated with more concomitant alterations in PMBCL (P < 0.01). Moreover, ctDNA fluctuation could reflect treatment responses and indicate relapse before imaging diagnosis. CONCLUSIONS: Lymphoma genomic profiling by ctDNA was concordant with that by tumor tissues. ctDNA might also be applied in lymphoma surveillance.

12.
Mol Cell Biochem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720056

ABSTRACT

Gastric cancer (GC) stands as one of the most formidable malignancies worldwide. It is well-established that miRNAs play a crucial role in the initiation and progression of various human cancers. Among these, miR-99a-3p has been implicated in the pathogenesis of GC. In the context of our study, we embarked on the comprehensive examination of miR-99a-3p expression in GC cells. Additionally, we sought to establish a correlation between miR-99a-3p expression levels and the overall survival (OS) of GC patients, and our findings hinted at its potential role in predicting an unfavorable prognosis. To further investigate the functional implications of miR-99a-3p in GC, we conducted a series of cell-based experiments after successfully knocking down miR-99a-3p. These investigations uncovered a substantial inhibition of cellular events associated with tumor progression. Moreover, employing TargetScan, we identified Tripartite motif-containing protein 21 (TRIM21) as a putative target with a binding site for miR-99a-3p. Subsequent dual-luciferase reporter gene assay confirmed the direct interaction between miR-99a-3p and TRIM21. Western blot analysis validated the alteration in TRIM21 expression levels, revealing an upregulation upon miR-99a-3p knockdown. Building on these molecular findings, we extended our investigations to human GC tissues, where we observed a downregulation of TRIM21, which, notably, correlated with shorter overall survival. Lastly, to further solidify our conclusions, we conducted a series of in vitro and in vivo rescue experiments, collectively suggesting that miR-99a-3p promoted the progression of GC cells through the downregulation of TRIM21. In summary, our study comprehensively explored the role of miR-99a-3p in GC, revealing its association with unfavorable patient outcomes, functional implications in tumor progression, and a direct regulatory relationship with TRIM21. These findings collectively underscore the significance of miR-99a-3p in the pathogenesis of GC and present a potential therapeutic avenue for further investigation.

13.
J Org Chem ; 89(8): 5287-5297, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38568740

ABSTRACT

Instigated by olfactory analysis of odorant molecules, the constitutions of 3,4-dihydrocoumarins prepared by PIFA-based oxidative cyclizations of 3-arylpropionic acids were revised by means of 2D NMR and X-ray analysis. Supported by computational analysis, the migratory mechanism of intermediate spirolactonic cations has been amended: 1,2-alkyl shifts instead of 1,2-carboxylic shifts were selectively obtained.

14.
J Biopharm Stat ; : 1-21, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180054

ABSTRACT

In clinical trials, unilateral or bilateral data can usually be encountered if a subject contributes one or both of paired organs. For the bilateral data, responses from two paired body parts are correlated. In this paper, we study various confidence intervals of common risk difference in stratified unilateral and bilateral data based on the Dallal's model. Simulation results show that the score method outperforms other methods and provides coverage probability close to the nominal level and satisfactory coverage width. Hence, the method is recommended. In addition, the inverse hyperbolic tangent Wald-type become as optimal as the score method with the increase of sample sizes. An otolaryngology example is used to demonstrate the proposed methods.

15.
Nucleic Acids Res ; 50(12): 6786-6800, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35736136

ABSTRACT

Spermatogenesis is precisely controlled by sophisticated gene expression programs and is driven by epigenetic reprogramming, including histone modification alterations and histone-to-protamine transition. Nuclear receptor binding SET domain protein 2 (Nsd2) is the predominant histone methyltransferase catalyzing H3K36me2 and its role in male germ cell development remains elusive. Here, we report that NSD2 protein is abundant in spermatogenic cells. Conditional loss of Nsd2 in postnatal germ cells impaired fertility owing to apoptosis of spermatocytes and aberrant spermiogenesis. Nsd2 deficiency results in dysregulation of thousands of genes and remarkable reduction of both H3K36me2 and H3K36me3 in spermatogenic cells, with H3K36me2 occupancy correlating positively with expression of germline genes. Nsd2 deficiency leads to H4K16ac elevation in spermatogenic cells, probably through interaction between NSD2 and PSMA8, which regulates acetylated histone degradation. We further reveal that Nsd2 deficiency impairs EP300-induced H4K5/8ac, recognized by BRDT to mediate the eviction of histones. Accordingly, histones are largely retained in Nsd2-deficient spermatozoa. In addition, Nsd2 deficiency enhances expression of protamine genes, leading to increased protamine proteins in Nsd2-deficient spermatozoa. Our findings thus reveal a previously unappreciated role of the Nsd2-dependent chromatin remodeling during spermatogenesis and provide clues to the molecular mechanisms in epigenetic abnormalities impacting male reproductive health.


Subject(s)
Epigenomics , Histone-Lysine N-Methyltransferase , Humans , Male , Histone-Lysine N-Methyltransferase/metabolism
16.
Drug Resist Updat ; 66: 100908, 2023 01.
Article in English | MEDLINE | ID: mdl-36493511

ABSTRACT

Non-small cell lung cancer is the leading cause of cancer related mortality worldwide, and lung adenocarcinoma (LUAD) is one of the most common subtypes. The role of N6-methyladenosine (m6A) modification in tumorigenesis and drug resistance in LUAD remains unclear. In this study, we evaluated the effects of vir-like m6A methyltransferase-associated protein (KIAA1429) depletion on proliferation, migration, invasion, and drug resistance of LUAD cells, and identified m6A-dependent downstream genes influenced by KIAA1429. We found that KIAA1429 activated Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway as a novel signaling event, which is responsible for tumorigenesis and resistance to gefitinib in LUAD cells. KIAA1429 and MAP3K2 showed high expression in LUAD patients' tissues. Knockdown of KIAA1429 inhibited MAP3K2 expression in an m6A methylation-dependent manner, restraining the progression of LUAD cells and inhibiting growth of gefitinib-resistant HCC827 cells. KIAA1429 positively regulated MAP3K2 expression, activated JNK/ MAPK pathway, and promoted drug resistance in gefitinib-resistant HCC827 cells. We reproduced the in vitro results in nude mouse xenografted with KIAA1429 knockdown cells. Our study showed that the mechanism of m6A KIAA1429-mediated gefitinib resistance in LUAD cells occurs by activating JNK/ MAPK signaling pathway. These findings provide potential targets for molecular therapy and clinical treatment in LUAD patients with gefitinib resistance.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Gefitinib/pharmacology , Gefitinib/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/pharmacology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
17.
Chem Soc Rev ; 52(8): 2713-2763, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37009721

ABSTRACT

Electrolytes that can ensure the movement of ions and regulate interfacial chemistries for fast mass and charge transfer are essential in many types of electrochemical energy storage devices. However, in the emerging energy-dense lithium-based batteries, the uncontrollable side-reactions and consumption of the electrolyte result in poor electrochemical performances and severe safety concerns. In this case, fluorination has been demonstrated to be one of the most effective strategies to overcome the above-mentioned issues without significantly contributing to engineering and technical difficulties. Herein, we present a comprehensive overview of the fluorinated solvents that can be employed in lithium-based batteries. Firstly, the basic parameters that dictate the properties of solvents/electrolytes are elaborated, including physical properties, solvation structure, interface chemistry, and safety. Specifically, we focus on the advances and scientific challenges associated with different solvents and the enhancement in their performance after fluorination. Secondly, we discuss the synthetic methods for new fluorinated solvents and their reaction mechanisms in depth. Thirdly, the progress, structure-performance relationship, and applications of fluorinated solvents are reviewed. Subsequently, we provide suggestions on the solvent selection for different battery chemistries. Finally, the existing challenges and further efforts on fluorinated solvents are summarized. The combination of advanced synthesis and characterization approaches with the assistance of machine learning will enable the design of new fluorinated solvents for advanced lithium-based batteries.

18.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3657-3667, 2024 Jul.
Article in Zh | MEDLINE | ID: mdl-39041138

ABSTRACT

This study aims to predict the possible targets and related signaling pathways of Modified Huoluo Xiaoling Pills against colorectal cancer(CRC) by both network pharmacology and molecular docking and verify the mechanism of action by experiments. TCMSP was used to obtain the active ingredients and targets of Modified Huoluo Xiaoling Pills, and GeneCards, DrugBank, OMIM, and TTD were employed to acquire CRC-related targets. Cytoscape software was utilized to construct the drug-active ingredient-target network, and the STRING database was applied to establish the protein-protein interaction(PPI) network. DAVID platform was adopted to investigate the targets in terms of GO function and KEGG pathway enrichment analysis. Molecular docking was performed in AutoDock Vina. HCT 116 cells were intervened by different concentrations of Modified Huoluo Xiaoling Pills-containing serum, and CCK-8 was used to detect the proliferation inhibition of HCT 116 cells in each group. Transwell was employed to show the invasive abi-lity of HCT 116 cells, and Western blot was taken to reveal the expression levels of ß-catenin, cyclinD1, c-Myc, as well as epithelial-mesenchymal transition(EMT) marker proteins E-cadherin, N-cadherin, vimentin, MMP2, MMP7, MMP9, and TWIST in HCT 116 cells. The network pharmacological analysis yielded 242 active ingredients of Modified Huoluo Xiaoling Pills, 1 844 CRC targets, and 127 overlapping targets of CRC and Modified Huoluo Xiaoling Pills, and the signaling pathways related to CRC involved PI3K-Akt, TNF, HIF-1, IL-17, Wnt, etc. Molecular docking showed that the key active ingredients had a stable binding conformation with the core proteins. CCK-8 indicated that Modified Huoluo Xiaoling Pills significantly inhibited the proliferation of HCT 116 cells. Transwell assay showed that with increasing concentration of Modified Huoluo Xiaoling Pills containing serum, the invasive ability of HCT 116 cells was more obviously inhibited. The expression of ß-catenin, cyclinD1, c-Myc, N-cadherin, vimentin, MMP2, MMP7, MMP9, and TWIST proteins were suppressed, and the expression of E-cadherin was improved by the intervention of drug-containing serum. Thus, it can be seen that Modified Huoluo Xiaoling Pills restrains the proliferation, invasion, and metastasis of CRC cells through multiple components, multiple targets, and multiple pathways, and the mechanism of action may be related to the inhibition of the activation of the Wnt/ß-catenin signaling pathway, thereby affecting the occurrence of EMT.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Cell Proliferation/drug effects , HCT116 Cells , Epithelial-Mesenchymal Transition/drug effects , Protein Interaction Maps/drug effects , Signal Transduction/drug effects
19.
Angew Chem Int Ed Engl ; 63(6): e202310905, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38100193

ABSTRACT

Electrolytes that can keep liquid state are one of the most important physical metrics to ensure the ions transfer with stable operation of rechargeable lithium-based batteries at a wide temperature window. It is generally accepted that strong polar solvents with high melting points favor the safe operation of batteries above room temperatures but are susceptible to crystallization at low temperatures (≤-40 °C). Here, a crystallization limitation strategy was proposed to handle this issue. We demonstrate that, although the high melting points of ethylene sulfite (ES, -17 °C) and fluoroethylene carbonate (FEC, ≈23 °C), their mixtures can avoid crystallization at low temperatures, which can be attributed to low intermolecular interactions and altered molecular motion dynamics. A suitable ES/FEC ratio (10 % FEC) can balance the bulk and interface transport of ions, enabling LiNi0.8 Mn0.1 Co0.1 O2 ||lithium (NCM811||Li) full cells to deliver excellent temperature resilience and cycling stability over a wide temperature range from -50 °C to +70 °C. More than 66 % of the capacity retention was achieved at -50 °C compared to room temperature. The NCM811||Li pouch cells exhibit high cycling stability under realistic conditions (electrolyte weight to cathode capacity ratio (E/C)≤3.5 g Ah-1 , negative to positive electrode capacity ratio (N/P)≤1.09) at different temperatures.

20.
BMC Med ; 21(1): 94, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927541

ABSTRACT

BACKGROUND: Previous studies have shown that monotherapy with apatinib, an oral tyrosine kinase inhibitor, has promising efficacy for treating recurrent or metastatic (RM) nasopharyngeal carcinoma (NPC) patients. In this study, we aimed to assess the efficacy and safety of apatinib combined with capecitabine as a second-line therapy or beyond for treating RM-NPC patients who failed the first-line platinum-based chemotherapy. METHODS: In this single-arm, phase II study, we enrolled RM-NPC patients who had at least one measurable lesion according to the Response Evaluation Criteria in Solid Tumors (RECIST v1.1). The sample size was determined using Simon's two-stage design. All patients were administered with apatinib 500 mg once daily and capecitabine 1000 mg/m2 twice per day on days 1-14 of each 21-day cycle. The primary endpoint was the objective response rate (ORR), and the secondary endpoints comprised disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: We enrolled 64 patients from September 2018 to August 2020. The ORR and DCR were 39.1% (95% CI, 27.1-52.1) and 85.9% (95% CI, 75.0-93.4), respectively. The median DoR was 14.4 months (95% CI, 7.8-21.0). As of April 20, 2021, the median follow-up duration was 12.0 months. The median PFS was 7.5 months (95% CI, 5.0-10.0) and the median OS was 15.7 months (95% CI, 11.3-20.1). The most common toxicities of any grade were anemia (75.0%), hand-foot syndrome (65.6%), and proteinuria (64.0%). Grade 3-4 toxicities were observed in 36 (56.3%) patients, with hypertension (14.1%), mucositis (12.4%), and fatigue (10.9%) most commonly observed. CONCLUSIONS: Apatinib plus capecitabine shows promising efficacy as a second-line treatment option in pretreated platinum-refractory RM-NPC patients. Dose selection of this combination needs further investigation considering the toxicity. TRIAL REGISTRATION: Chi-CTR1800017229.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Capecitabine/adverse effects , Prospective Studies , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL