Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Chem Soc Rev ; 52(3): 1024-1067, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36602333

ABSTRACT

Noncancerous diseases include a wide plethora of medical conditions beyond cancer and are a major cause of mortality around the world. Despite progresses in clinical research, many puzzles about these diseases remain unanswered, and new therapies are continuously being sought. The evolution of bio-nanomedicine has enabled huge advancements in biosensing, diagnosis, bioimaging, and therapeutics. The recent development of aggregation-induced emission luminogens (AIEgens) has provided an impetus to the field of molecular bionanomaterials. Following aggregation, AIEgens show strong emission, overcoming the problems associated with the aggregation-caused quenching (ACQ) effect. They also have other unique properties, including low background interferences, high signal-to-noise ratios, photostability, and excellent biocompatibility, along with activatable aggregation-enhanced theranostic effects, which help them achieve excellent therapeutic effects as an one-for-all multimodal theranostic platform. This review provides a comprehensive overview of the overall progresses in AIEgen-based nanoplatforms for the detection, diagnosis, bioimaging, and bioimaging-guided treatment of noncancerous diseases. In addition, it details future perspectives and the potential clinical applications of these AIEgens in noncancerous diseases are also proposed. This review hopes to motivate further interest in this topic and promote ideation for the further exploration of more advanced AIEgens in a broad range of biomedical and clinical applications in patients with noncancerous diseases.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Theranostic Nanomedicine/methods , Nanomedicine , Optical Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
2.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 1-7, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38158696

ABSTRACT

Cervical cancer (CC) is a malignancy seriously endangering women's life and health worldwide. GEPIA demonstrated that attractin-like 1 (ATRNL1) presents downregulation in CC tissue. Transcription factor CCAAT enhancer binding protein beta (CEBPB) was previously revealed to present depletion in CC tissue. We attempted to clarify molecular mechanism between ATRNL1 and CEBPB underlying CC progression. Bioinformatics, RT-qPCR and western blotting revealed expression characteristics of ATRNL1 in CC. RT-qPCR measured ATRNL1 and CEBPB levels in CC cell lines. Gain-of-function assays clarified role of ATRNL1 in CC cell behaviors. Bioinformatics, Pearson correlation, ChIP and luciferase reporter experiments assessed association of ATRNL1 and CEBPB in CC cells. Rescue assays assessed regulatory function of CEBPB-ATRNL1 in CC cellular processes. ATRNL1 showed depletion in CC tissue and cells at mRNA and protein levels. ATRNL1 upregulation repressed CC cell viability, migration and EMT. CEBPB bound to ATRNL1 promoter to transcriptionally upregulate ATRNL1 in CC cells. The impact of CEBPB elevation on CC cell viability, migration and EMT were countervailed by ATRNL1 depletion. ATRNL1 and CEBPB present depletion and serve as tumor suppressors in CC cells. ATRNL1 suppresses CC cell malignancy through CEBPB activation, which may provide a potential new direction for seeking therapeutic plans for CC.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Uterine Cervical Neoplasms , Female , Humans , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
3.
Cancer Cell Int ; 22(1): 107, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248047

ABSTRACT

BACKGROUND: DFNA5 (GSDME) belongs to Gasdermin familily that is involved in a variety of cancers and triggers cell pyroptosis after chemical treatment. However, the relationship in DFNA5 between prognosis and immune cells in diverse cancers has been receiving little attention. Tumor immune cells infiltration and exhaustion may associate with patients prognosis. The roles of DFNA5 in tumor immune cells infiltration and exhaustion have not been clarified. METHODS: The expression level of DFNA5 was determined by the Tumour Immune Estimation Resource and the Oncomine database. Then the impacts of DFNA5 in prognosis were assessed by Kaplan-Meier plotter and ULACAN. The correlations between DFNA5 and tumour-infiltrating lymphocytes were explored by TIMER. In addition, the relationships in the expression levels of DFNA5 and typical genes combination of tumour-infiltrating lymphocytes were analysed by GEPIA and TIMER. In this study, we screened the chemokine and immune related proteins interacted with DFNA5 using TurboID system to explore the instantaneous or weak interactions. RESULTS: DFNA5 significantly influences the prognosis in different cancers according to The Cancer Genome Atlas (TCGA). The expression levels of DFNA5 showed positive correlations to the infiltration of macrophages, CD8 + T cells, CD4 + T cells in liver hepatocellular carcinoma (LIHC), colon adenocarcinoma (COAD), and lung adenocarcinoma (LUAD). DFNA5 expression displayed obvious correlations with multiple lymphocytes gene makers in COAD, LIHC and LUAD. DFNA5 expression has effects on the prognosis of liver hepatocellular carcinoma and LUAD. DFNA5 upregulated the expression levels of PDCD1 and CD274 in a dose-dependent manner. Chemokine and immune related proteins interact with DFNA5. CONCLUSIONS: These results indicate that DFNA5 is related to patient prognosis and immune cells, consisting of macrophages, CD4 + T cells, and CD8 + T cells, in diverse cancers. In addition, DFNA5 expression might contribute to the regulation of T cell exhaustion, tumour-associated macrophages (TAMs), and Tregs in COAD, LIHC and LUAD. DFNA5 may regulate immune infiltration via EIF2AK2. IFNGR1 was related to the functions of PD-L1 expression and PD-1 checkpoint pathway. These results indicate that DFNA5 levels may be act as a prognostic factor and predict the degrees of immune cells infiltration in LIHC and LUAD.

4.
Lancet Oncol ; 22(5): 716-726, 2021 05.
Article in English | MEDLINE | ID: mdl-33857411

ABSTRACT

BACKGROUND: Cisplatin-based induction chemotherapy plus concurrent chemoradiotherapy in the treatment of patients with locoregionally advanced nasopharyngeal carcinoma has been recommended in the National Comprehensive Cancer Network Guidelines. However, cisplatin is associated with poor patient compliance and has notable side-effects. Lobaplatin, a third-generation platinum drug, has shown promising antitumour activity against several malignancies with less toxicity. In this study, we aimed to evaluate the efficacy of lobaplatin-based induction chemotherapy plus concurrent chemoradiotherapy over a cisplatin-based regimen in patients with locoregional, advanced nasopharyngeal carcinoma. METHODS: In this open-label, non-inferiority, randomised, controlled, phase 3 trial done at five hospitals in China, patients aged 18-60 years with previously untreated, non-keratinising stage III-IVB nasopharyngeal carcinoma; Karnofsky performance-status score of at least 70; and adequate haematological, renal, and hepatic function were randomly assigned (1:1) to receive intravenously either lobaplatin-based (lobaplatin 30 mg/m2 on days 1 and 22, and fluorouracil 800 mg/m2 on days 1-5 and 22-26 for two cycles) or cisplatin-based (cisplatin 100 mg/m2 on days 1 and 22, and fluorouracil 800 mg/m2 on days 1-5 and 22-26 for two cycles) induction chemotherapy, followed by concurrent lobaplatin-based (two cycles of intravenous lobaplatin 30 mg/m2 every 3 weeks plus intensity-modulated radiotherapy) or cisplatin-based (two cycles of intravenous cisplatin 100 mg/m2 every 3 weeks plus intensity-modulated radiotherapy) chemoradiotherapy. Total radiation doses of 68-70 Gy (for the sum of the volumes of the primary tumour and enlarged retropharyngeal nodes), 62-68 Gy (for the volume of clinically involved gross cervical lymph nodes), 60 Gy (for the high-risk target volume), and 54 Gy (for the low-risk target volume), were administered in 30-32 fractions, 5 days per week. Randomisation was done centrally at the clinical trial centre of Sun Yat-sen University Cancer Centre by means of computer-generated random number allocation with a block design (block size of four) stratified according to disease stage and treatment centre. Treatment assignment was known to both clinicians and patients. The primary endpoint was 5-year progression-free survival, analysed in both the intention-to-treat and per-protocol populations. If the upper limit of the 95% CI for the difference in 5-year progression-free survival between the lobaplatin-based and cisplatin-based groups did not exceed 10%, non-inferiority was met. Adverse events were analysed in all patients who received at least one cycle of induction chemotherapy. This trial is registered with the Chinese Clinical Trial Registry, ChiCTR-TRC-13003285 and is closed. FINDINGS: From June 7, 2013, to June 16, 2015, 515 patients were assessed for eligibility and 502 patients were enrolled: 252 were randomly assigned to the lobaplatin-based group and 250 to the cisplatin-based group. After a median follow-up of 75·3 months (IQR 69·9-81·1) in the intention-to-treat population, 5-year progression-free survival was 75·0% (95% CI 69·7-80·3) in the lobaplatin-based group and 75·5% (70·0 to 81·0) in the cisplatin-based group (hazard ratio [HR] 0·98, 95% CI 0·69-1·39; log-rank p=0·92), with a difference of 0·5% (95% CI -7·1 to 8·1; pnon-inferiority=0·0070). In the per-protocol population, the 5-year progression-free survival was 74·8% (95% CI 69·3 to 80·3) in the lobaplatin-based group and 76·4% (70·9 to 81·9) in the cisplatin-based group (HR 1·04, 95% CI 0·73 to 1·49; log-rank p=0·83), with a difference of 1·6% (-6·1 to 9·3; pnon-inferiority=0·016). 63 (25%) of 252 patients in the lobaplatin-based group and 63 (25%) of 250 patients in the cisplatin-based group had a progression-free survival event in the intention-to-treat population; 62 (25%) of 246 patients in the lobaplatin-based group and 58 (25%) of 237 patients in the cisplatin-based group had a progression-free survival event in the per-protocol population. The most common grade 3-4 adverse events were mucositis (102 [41%] of 252 in the lobaplatin-based group vs 99 [40%] of 249 in the cisplatin-based group), leucopenia (39 [16%] vs 56 [23%]), and neutropenia (25 [10%] vs 59 [24%]). No treatment-related deaths were reported. INTERPRETATION: Lobaplatin-based induction chemotherapy plus concurrent chemoradiotherapy resulted in non-inferior survival and fewer toxic effects than cisplatin-based therapy. The results of our trial indicate that lobaplatin-based induction chemotherapy plus concurrent chemoradiotherapy might be a promising alternative regimen to cisplatin-based treatment in patients with locoregional, advanced nasopharyngeal carcinoma. FUNDING: National Science and Technology Pillar Program, International Cooperation Project of Science and Technology Program of Guangdong Province, Planned Science and Technology Project of Guangdong Province, and Cultivation Foundation for the Junior Teachers at Sun Yat-sen University. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemoradiotherapy , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Neoplasms/therapy , Adult , Cyclobutanes/administration & dosage , Cyclobutanes/adverse effects , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Humans , Induction Chemotherapy , Male , Middle Aged , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/pathology , Neoplasm Staging , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/adverse effects , Radiotherapy Dosage
5.
Small ; 17(40): e2103239, 2021 10.
Article in English | MEDLINE | ID: mdl-34486220

ABSTRACT

Nanomaterial-based photothermal and photocatalytic therapies are effective against various types of cancers. However, combining two or more materials is considered necessary to achieve the synergistic anticancer effects of photothermal and photocatalytic therapy, which made the preparation process complicated. Herein, the authors describe simple 2D titanium diselenide (TiSe2 ) nanosheets (NSs) that can couple photothermal therapy with photocatalytic therapy. The TiSe2 NSs are prepared using a liquid exfoliation method. They show a layered structure and possess high photothermal conversion efficiency (65.58%) and good biocompatibility. Notably, upon near-infrared irradiation, these NSs exhibit good photocatalytic properties with enhanced reactive oxygen species generation and H2 O2 decomposition in vitro. They can also achieve high temperatures, with heat improving their catalytic ability to further amplify oxidative stress and glutathione depletion in cancer cells. Furthermore, molecular mechanism studies reveal that the synergistic effects of photothermal and enhanced photocatalytic therapy can simultaneously lead to apoptosis and necrosis in cancer cells via the HSP90/JAK3/NF-κB/IKB-α/Caspase-3 pathway. Systemic exploration reveals that the TiSe2 NSs has an appreciable degradation rate and accumulates passively in tumor tissue, where they facilitate photothermal and photocatalytic effects without obvious toxicity. Their study thus indicates the high potential of biodegradable TiSe2 NSs in synergistic phototherapy for cancer treatment.


Subject(s)
Nanoparticles , Neoplasms , Humans , Infrared Rays , Phototherapy , Titanium
6.
J Cell Mol Med ; 24(11): 6362-6372, 2020 06.
Article in English | MEDLINE | ID: mdl-32319715

ABSTRACT

Glioblastoma (GBM) belongs to the high-grade (IV) gliomas with extremely poor prognosis. Accumulating evidence uncovered the key roles of long non-coding RNAs (lncRNAs) in GBM development. This study aimed to determine the biological actions and the clinical relevance of lncRNA MIR4435-2 Host Gene (MIR4435-2HG) in GBM. Data from GEPIA database showed that MIR4435-2HG was up-regulated in GBM tissues and high expression of MIR4435-2HG correlated with shorter overall survival of GBM patients. Further experimental assays verified the up-regulation of MIR4435-2HG in GBM tissues and cell lines. In vitro cell studies and in vivo animal studies showed that knockdown of MIR4435-2HG resulted in the inhibition of GBM cell proliferation and invasion and in vivo tumour growth, while MIR4435-2HG overexpression driven GBM progression. Furthermore, MIR44435-2HG was found to sponge miR-1224-5p and suppress miR-1224-5p expression; overexpression of miR-1224-5p attenuated the enhancement in GBM cell proliferation and invasion induced by MIR4435-2HG overexpression. In a subsequent study, miR-1224-5p was found to target transforming growth factor-beta receptor type 2 (TGFBR2) and repressed TGFBR2 expression, and in vitro assays showed that miR-1224-5p exerted tumour-suppressive effects via targeting TGFBR2. More importantly, TGFRB2 knockdown antagonized hyper-proliferation and invasion of GBM cells with MIR4435-2HG overexpression. Clinically, the down-regulation of miR-1224-5p and up-regulation of TGFBR2 were verified in the GBM clinical samples. Taken together, the present study suggests the oncogenic role of MIR4435-2HG in GBM and underlies the key function of MIR4435-2HG-driven GBM progression via targeting miR-1224-5p/TGFBR2 axis.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Receptor, Transforming Growth Factor-beta Type II/metabolism , Signal Transduction , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Mice, Inbred BALB C , MicroRNAs/genetics , Neoplasm Invasiveness , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Up-Regulation/genetics
7.
Ann Diagn Pathol ; 44: 151436, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31865249

ABSTRACT

Despite development in therapies, the high recurrence and low positivity of biomarkers for diagnosis still result in glioma with high mortality. In this study, we aimed to identify a potential miRNA signature to evaluate the effect of radiotherapy in glioma patients. MicroRNA (miRNA) sequencing was performed on miRNAs isolated from serum exosomes in a cohort of glioma patients before and after radiotherapy. A total of 18 up-regulated differentially expressed (DE) miRNAs and 16 down-regulated DE miRNAs were identified. Subsequently, the target genes of DE miRNAs were predicted based on multiple miRNA-target databases. Further, it was indicated that these targets were primarily involved in metabolic process, p53 signaling pathway and cancer pathways, suggesting that these miRNAs play a crucial role in glioma by regulating targets and affect the occurrence and development of the disease. In general, this study presented the variation of miRNAs in blood exosomes before and after radiotherapy. It can not only be helpful for the diagnosis of glioma, but also find new candidate biomarkers for monitoring the condition and evaluating the efficacy of radiotherapy in glioma. It provides a new idea for the diagnosis, treatment and prognosis evaluation of glioma.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Glioma/genetics , MicroRNAs/blood , Biomarkers, Tumor/blood , Brain Neoplasms/blood , Brain Neoplasms/radiotherapy , Cell-Free Nucleic Acids/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Glioma/blood , Glioma/radiotherapy , Humans , MicroRNAs/genetics
8.
Bioact Mater ; 30: 200-213, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37663305

ABSTRACT

Aggregation-Induced Emission luminogen (AIEgen) possess great potential in enhancing bioimaging-guided radiotherapeutic effects and radioimmunotherapy to improve the therapeutic effects of the tumor with good biosafety. Bacteria as a natural carrier have demonstrated great advantages in tumor targeted delivery and penetration to tumor. Herein, we construct a delivery platform that Salmonella VNP20009 act as an activated bacteria vector loaded the as-prepared novel AIEgen (TBTP-Au, VNP@TBTP-Au), which showed excellent radio-immunotherapy. VNP@TBTP-Au could target and retain AIEgen at the tumor site and deliver it into tumor cells specially, upon X-ray irradiation, much ROS was generated to induce immunogenic cell death via cGAS-STING signaling pathway to evoke immune response, thus achieving efficient radioimmunotherapy of the primary tumor with good biosafety. More importantly, the radioimmunotherapy with VNP@TBTP-Au formatted good abscopal effect that was able to suppress the growth of distant tumor. Our strategy pioneer a novel and simple strategy for the organic combination of bacteria and imaging-guided radiotherapy, and also pave the foundation for the combination with immunotherapy for better therapeutic effects.

9.
Br J Radiol ; 96(1146): 20220384, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37102792

ABSTRACT

OBJECTIVES: Glioblastoma (GBM) is the most common malignant primary brain tumor with local recurrence after radiotherapy (RT), the most common mode of failure. Standard RT practice applies the prescription dose uniformly across tumor volume disregarding radiological tumor heterogeneity. We present a novel strategy using diffusion-weighted (DW-) MRI to calculate the cellular density within the gross tumor volume (GTV) in order to facilitate dose escalation to a biological target volume (BTV) to improve tumor control probability (TCP). METHODS: The pre-treatment apparent diffusion coefficient (ADC) maps derived from DW-MRI of ten GBM patients treated with radical chemoradiotherapy were used to calculate the local cellular density based on published data. Then, a TCP model was used to calculate TCP maps from the derived cell density values. The dose was escalated using a simultaneous integrated boost (SIB) to the BTV, defined as the voxels for which the expected pre-boost TCP was in the lowest quartile of the TCP range for each patient. The SIB dose was chosen so that the TCP in the BTV increased to match the average TCP of the whole tumor. RESULTS: By applying a SIB of between 3.60 Gy and 16.80 Gy isotoxically to the BTV, the cohort's calculated TCP increased by a mean of 8.44% (ranging from 7.19 to 16.84%). The radiation dose to organ at risk is still under their tolerance. CONCLUSIONS: Our findings indicate that TCPs of GBM patients could be increased by escalating radiation doses to intratumoral locations guided by the patient's biology (i.e., cellularity), moreover offering the possibility for personalized RT GBM treatments. ADVANCES IN KNOWLEDGE: A personalized and voxel level SIB radiotherapy method for GBM is proposed using DW-MRI, which can increase the tumor control probability and maintain organ at risk dose constraints.


Subject(s)
Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Diffusion Magnetic Resonance Imaging , Radiotherapy Dosage , Magnetic Resonance Imaging , Radiotherapy Planning, Computer-Assisted/methods , Probability
10.
JAMA Netw Open ; 6(1): e2253285, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36705923

ABSTRACT

Importance: High-grade gliomas (HGGs) constitute the most common and aggressive primary brain tumor, with 5-year survival rates of 30.9% for grade 3 gliomas and 6.6% for grade 4 gliomas. The add-on efficacy of interferon alfa is unclear for the treatment of HGG. Objectives: To compare the therapeutic efficacy and toxic effects of the combination of temozolomide and interferon alfa and temozolomide alone in patients with newly diagnosed HGG. Design, Setting, and Participants: This multicenter, randomized, phase 3 clinical trial enrolled 199 patients with newly diagnosed HGG from May 1, 2012, to March 30, 2016, at 15 Chinese medical centers. Follow-up was completed July 31, 2021, and data were analyzed from September 13 to November 24, 2021. Eligible patients were aged 18 to 75 years with newly diagnosed and histologically confirmed HGG and had received no prior chemotherapy, radiotherapy, or immunotherapy for their HGG. Interventions: All patients received standard radiotherapy concurrent with temozolomide. After a 4-week break, patients in the temozolomide with interferon alfa group received standard temozolomide combined with interferon alfa every 28 days. Patients in the temozolomide group received standard temozolomide. Main Outcomes and Measures: The primary end point was 2-year overall survival (OS). Secondary end points were 2-year progression-free survival (PFS) and treatment tolerability. Results: A total of 199 patients with HGG were enrolled, with a median follow-up time of 66.0 (95% CI, 59.1-72.9) months. Seventy-nine patients (39.7%) were women and 120 (60.3%) were men, with ages ranging from 18 to 75 years and a median age of 46.9 (95% CI, 45.3-48.7) years. The median OS of patients in the temozolomide plus interferon alfa group (26.7 [95% CI, 21.6-31.7] months) was significantly longer than that in the standard group (18.8 [95% CI, 16.9-20.7] months; hazard ratio [HR], 0.64 [95% CI, 0.47-0.88]; P = .005). Temozolomide plus interferon alfa also significantly improved median OS in patients with O6-methylguanine-DNA methyltransferase (MGMT) unmethylation (24.7 [95% CI, 20.5-28.8] months) compared with temozolomide (17.4 [95% CI, 14.1-20.7] months; HR, 0.57 [95% CI, 0.37-0.87]; P = .008). Seizure and influenzalike symptoms were more common in the temozolomide plus interferon alfa group, with 2 of 100 (2.0%) and 5 of 100 (5.0%) patients with grades 1 and 2 toxic effects, respectively (P = .02). Finally, results suggested that methylation level at the IFNAR1/2 promoter was a marker of sensitivity to temozolomide plus interferon alfa. Conclusions and Relevance: Compared with the standard regimen, temozolomide plus interferon alfa treatment could prolong the survival time of patients with HGG, especially the MGMT promoter unmethylation variant, and the toxic effects remained tolerable. Trial Registration: ClinicalTrials.gov Identifier: NCT01765088.


Subject(s)
Brain Neoplasms , Glioma , Female , Humans , Male , Middle Aged , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/adverse effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Dacarbazine/therapeutic use , Glioma/drug therapy , Interferon-alpha/therapeutic use , Temozolomide/therapeutic use , Adolescent , Young Adult , Adult , Aged
11.
Article in English | MEDLINE | ID: mdl-35543331

ABSTRACT

Relative to traditional photosensitizer (PS) agents, those that exhibit aggregation-induced emission (AIE) properties offer key advantages in the context of photodynamic therapy (PDT). At present, PDT efficacy is markedly constrained by the hypoxic microenvironment within tumors and the limited depth to which lasers can penetrate in a therapeutic context. Herein, we developed platelet-mimicking MnO2 nanozyme/AIEgen composites (PMD) for use in the interventional PDT treatment of hypoxic tumors. The resultant biomimetic nanoparticles (NPs) exhibited excellent stability and were able to efficiently target tumors. Moreover, they were able to generate O2 within the tumor microenvironment owing to their catalase-like activity. Notably, through an interventional approach in which an optical fiber was introduced into the abdominal cavity of mice harboring orthotopic colon tumors, good PDT efficacy was achieved. We thus propose that a novel strategy consisting of a combination of an AIEgen-based bionic nanozyme and a biomimetic cell membrane coating represents an ideal therapeutic platform for targeted antitumor PDT. This study is the first to have combined interventional therapy and AIEgen-based PDT, thereby overcoming the limited light penetration that typically constrains the therapeutic efficacy of this technique, highlighting a promising new AIEgen-based PDT treatment strategy.

12.
Front Oncol ; 12: 989220, 2022.
Article in English | MEDLINE | ID: mdl-36263201

ABSTRACT

Background and aim: A subsequent cardiac toxicity is deemed to be dose-dependent for left-sided breast cancer irradiation. This study aims to demonstrate the effect of respiratory capacity for dose sparing when the deep inspiration breath hold with Active Breathing Coordinator technique (ABC-DIBH) is used in left-sided breast cancer irradiation. Methods: 74 left-sided breast cancer patients, who received whole breast or post-mastectomy chest wall radiotherapy with ABC-DIBH between 2020 and 2021 in our center, were retrospectively reviewed in this study. CT scans of free breath (FB) and ABC-DIBH were done for each patient, and two treatment plans with a prescription dose of 5000 cGy/25 Fr were designed separately. The dose to heart, left anterior descending artery (LAD) and lungs was compared between FB and ABC-DIBH. The correlation between individual parameters (dose to organs at risk (OARs) and minimum heart distance (MHD)) was analyzed, and the effect of respiratory capacity for dose sparing was assessed. Results: The plans with ABC-DIBH achieved lower Dmean for heart (34.80%, P < 0.01) and LAD (29.33%, P < 0.01) than those with FB. Regression analysis revealed that both Dmean and D2 of heart were negatively correlated with MHD in the plans with FB and ABC-DIBH, which decreased with the increase in MHD by 37.8 cGy and 309.9 cGy per 1mm, respectively. Besides, a lower Dmean of heart was related to a larger volume of ipsilateral lung in plans with FB. With the increase in volume of ipsilateral lung, the linear correlation was getting weaker and weaker until the volume of ipsilateral lung reached 1700 cc. Meanwhile, a negative linear correlation between Dmean of LAD and MHD in plans with FB and ABC-DIBH was observed, whose slope was 162.5 and 135.9 cGy/mm, respectively. Furthermore, when the respiratory capacity of ABC-DIBH reached 1L, and the relative ratio (ABC-DIBH/FB) reached 3.6, patients could obtain the benefit of dose sparing. The larger difference in respiratory capacity had no significant effect in the larger difference of MHD, Dmean of heart and Dmean of LAD between FB and ABC-DIBH. Conclusion: This study demonstrates the sufficiently good effect of ABC-DIBH when utilizing for cardiac sparing. It also reveals the correlations among individual parameters and the effect of respiratory capacity for dose sparing. This helps take optimal advantage of the ABC-DIBH technique and predict clinical benefits.

13.
Front Oncol ; 12: 704890, 2022.
Article in English | MEDLINE | ID: mdl-35814449

ABSTRACT

Background: Melanoma brain metastases (BMs) are associated with poor prognosis and are the main cause of mortality in melanoma patients. BRAF inhibitors have shown intracranial activity in both treatment-naïve and previously treated BM patients. We aimed to investigate if there was any difference in response of BRAF inhibitors in these two cohorts. Materials and Methods: Electronic database search included PubMed, Medline, and Cochrane library until March 2021 for studies with desired comparative outcomes. Outcomes of interest that were obtained for meta-analysis included intracranial response rate as the primary outcome and survival and safety outcomes as the secondary outcomes. Review Manager version 5.4 was used for data analysis. Results: Three studies comprising 410 BRAF-mutated melanoma patients with BMs were included according to eligibility criteria. The comparative cohort included patients with treatment-naïve BMs (TN cohort; n = 255) and those who had progressive disease after receiving local brain treatment for BMs (PT cohort; n = 155). Meta-analysis revealed that BRAF inhibitors (vemurafenib and dabrafenib) and BRAF/MEK inhibitor combination (dabrafenib and trametinib) induced significantly higher intracranial disease control (OR 0.58 [95% CI: 0.34, 0.97], p = 0.04) and a trend toward improved progression-free survival (PFS) (HR 1.22 [95% CI: 0.98, 1.52], p = 0.08) in the PT cohort as compared to the TN cohort. Overall survival was not significantly different between the cohorts (HR 1.16 [95% CI: 0.89, 1.51], p = 0.28). Subgroup analysis revealed that PFS was significantly improved (HR 1.67 [95% CI: 1.06, 2.62], p = 0.03), and a trend toward improved OS (HR 1.62 [95% CI: 0.95, 2.75], p = 0.08) was achieved in patients receiving BRAF/MEK inhibitor combination and patients with BRAFv600K mutation receiving dabrafenib alone. No increase in overall adverse events (AEs), grade 3/4 AEs, and severe adverse events (SAEs) was observed between the cohorts. Conclusions: BRAF inhibitors (plus MEK inhibitor) may achieve better intracranial disease stability in BRAF-mutant melanoma patients who have received previous local treatment for BMs. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/), identifier CRD42020185984.

14.
Transl Neurosci ; 12(1): 127-137, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33821195

ABSTRACT

In oncogenesis and development of malignant tumor, microRNAs (miRNAs) regulate the complex gene expression associated with the tumor pathogenesis. Currently, only few studies have been conducted to identify miRNAs and the potential pathways involved in the pathogenesis of brain metastasis in patients who underwent radiotherapy, especially miRNAs in the plasma exosomes. Therefore, this study is aimed to use small RNA analysis to identify miRNAs and their potential target genes in plasma exosomes during the initiation and development of brain metastasis in patients who underwent radiotherapy. Using high-throughput sequencing technologies, we identified 35 differentially expressed miRNAs in patients with brain metastasis who had undergone radiotherapy. In annotation of miRNA targets, gene ontology enrichment analysis revealed that the targets of the differentially expressed miRNAs were significantly enriched in the regulation of cellular processes. Kyoto Encyclopedia of Genes and Genomes revealed that most of the miRNA targets were cancer-related, including genes involved in the mitogen-activated protein kinase signaling pathway, cancer-related pathways, phosphatidylinositol 3-kinase-protein kinase B signaling pathway, microtubule-associated protein kinase signaling pathway, Ras signaling pathway, regulation of the actin cytoskeleton, and axon guidance. In conclusion, this study provides a new perspective to understand the possible function of these miRNAs in the pathogenesis of brain metastasis. This was the first time that a pilot study identified plasma exosomal miRNAs in five patients with brain metastasis before and after radiotherapy. This study is the beginning; more specimen and further research are needed to explore the functional role of specific miRNAs and their potential as therapeutic targets for brain metastasis.

15.
Int J Gen Med ; 14: 5209-5220, 2021.
Article in English | MEDLINE | ID: mdl-34512004

ABSTRACT

PURPOSE: Glioblastoma (GBM) shows frequent relapse and is highly resistant to treatment; therefore, it is considered fatal. Various vaccination protocols that have been tested in patients with GBM, which is the most common and aggressive primary brain tumor, have indicated safety and efficacy, to some extent, when used alone or in combination with standard of care. Recently, neoantigen-based personalized vaccines have shown tremendous immunogenicity and safety in GBM. We aimed to systematically review the medical literature for clinical trials to evaluate the efficacy and safety of neoantigen-based personalized vaccines for newly diagnosed GBM. METHODS: We conducted a literature search for clinical trials on PubMed, Cochrane Library, China National Knowledge Infrastructure, and ClinicalTrials.gov until March 20, 2021. The primary outcomes of interest were immunogenicity and safety of the therapy. Efficacy outcomes, such as progression-free survival and overall survival, were secondary outcomes of interest. RESULTS: Two clinical trials involving 24 patients were included in this review. High immunogenicity was observed in both studies. The GAPVAC-101 trial reported 50% APVAC1-induced and 84.7% APVAC2-induced immunogenicity with CD8+ and CD4+ T cell responses in 92% (12/13) and 80% (8/10) immune responders, respectively. Two out of five patients showed CD4+ and CD8+ T cell responses in the study by Keskin et al. Dexamethasone use had limited immunogenicity in a trial by Keskin et al (6/8). No serious treatment-related adverse events were reported. CONCLUSION: Actively personalized vaccines aimed at unmutated peptides and neoantigens for patients with GBM are safe and highly immunogenic, particularly when administered in combination. Larger studies are warranted to investigate the role.

16.
Front Oncol ; 11: 742971, 2021.
Article in English | MEDLINE | ID: mdl-34745964

ABSTRACT

BACKGROUND: Radiation therapy (RT) is the mainstay of brain metastases (BMs), and anti-PD-1 blockade has led to intracranial responses in non-small cell lung carcinoma (NSCLC) patients with BMs. OBJECTIVE: This study aimed to evaluate the efficacy and safety of adding anti-PD-1 blockade to RT in the management of NSCLC patients with BM in terms of survival outcome. MATERIALS AND METHODS: We retrospectively reviewed 70 NSCLC patients with BMs who were treated with whole brain radiation therapy (WBRT) between January 2016 and January 2021. Of the 70 patients, 29 additionally received anti-PD-1 therapy within 30 days of WBRT initiation. Baseline characteristics of the patients and efficacy outcomes such as progression-free survival (PFS) and overall survival (OS) were statistically compared using SPSS v26. Results were obtained using the Chi-square test/Fisher exact test, t-test, Kaplan-Meier, and Cox regression survival analyses. RESULTS: The median survival for the entire cohort was 24 months (95% CI, 19.5-28.5). The median survival times for WBRT alone and WBRT plus anti-PD-1 therapy cohorts were 20 months (95% CI, 11.6-28.3) and 27 months (95% CI, 19.5-28.5), respectively (p=0.035). There was no statistical difference in PFS for the treatment cohorts (median PFS for WBRT alone: 7 months vs. 12 months for WBRT plus anti-PD-1, p=0.247). In EGFR wild-type subgroup (n=31), both PFS (p=0.037) and OS (p=0.012) were significantly improved. Only the treatment group (WBRT plus anti-PD-1) was a significant predictor of OS on univariate and multivariate analyses (p=0.040). There were no significant differences in adverse events among the treatment groups. CONCLUSIONS: NSCLC patients with BM receiving additional anti-PD-1 therapy may derive better OS than WBRT alone without any increase in adverse events. Prospective well-designed studies are warranted to validate and elucidate the additive effects of the two modalities in this group of patients.

17.
Medicine (Baltimore) ; 99(2): e18591, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31914038

ABSTRACT

This analysis aimed to investigate whether the long-term administration of temozolomide (TMZ) claimed a survival advantage for patients with glioblastoma in China.A total of 75 patients with newly diagnosed glioblastoma at the Department of Radiation Oncology, Shenzhen People's Hospital between August 2008 and August 2016 were retrospectively evaluated during analysis. A propensity-matched analysis was performed to balance the basic characteristics of patients between compared groups. Kaplan-Meier method and Cox proportional hazards model were used to assess progression-free survival (PFS) and overall survival (OS) of patients receiving 6 adjuvant TMZ cycles compared with patients treated with more than 6 cycles.Twenty of 75 patients received more than 6 cycles of TMZ, and the other 55 patients were treated with a median of 6 cycles ranging from 1 to 6. The patients with long-term administration of TMZ had better OS (47.0 months, 95% CI 20.0-73.9 vs 20.6 months, 95% CI 17.9-23.2, P = .014) but not PFS (17.0 months, 95% CI 10.1-24.5 vs 14.2 months, 95% CI 11.8-16.6, P = .133). Balancing the clinical factors with a propensity-matched analysis also showed the significant advantage of prolonged TMZ application in terms of OS but not PFS.Prolonged administration of TMZ beyond 6 cycles did demonstrate survival benefits for patients with initially diagnosed glioblastoma.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Glioblastoma/drug therapy , Glioblastoma/mortality , Temozolomide/therapeutic use , Adolescent , Adult , Aged , Antineoplastic Agents, Alkylating/administration & dosage , Brain Neoplasms/therapy , Chemotherapy, Adjuvant , Drug Administration Schedule , Female , Glioblastoma/therapy , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Propensity Score , Retrospective Studies , Temozolomide/administration & dosage , Young Adult
18.
Int J Nanomedicine ; 15: 1469-1480, 2020.
Article in English | MEDLINE | ID: mdl-32184599

ABSTRACT

PURPOSE: In spite of its enhanced efficacy and reduced side effects in clinical hepatocellular carcinoma (HCC) therapy, the therapeutic efficacy of antitumor angiogenesis inhibitor sorafenib (SFB) is still restricted due to short in vivo half-life and drug resistance. Here, a novel SFB-loaded dendritic polymeric nanoparticle (NP-TPGS-SFB) was developed for enhanced therapy of HCC. METHODS: NP-TPGS-SFB was fabricated by encapsulating SFB with biodegradable dendritic polymers poly(amidoamine)-poly(γ-benzyl-L-Glutamate)-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PBLG-b-TPGS). RESULTS: NP-TPGS-SFB exhibited excellent stability and achieved acid-responsive release of SFB. It also exhibited much higher cellular uptake efficiency in HepG2 human liver cells than PEG-conjugated NP (NP-PEG-SFB). Furthermore, MTT assay confirmed that NP-TPGS-SFB induced higher cytotoxicity than NP-PEG-SFB and free SFB, respectively. Lastly, NP-TPGS-SFB significantly inhibited tumor growth in mice bearing HepG2 xenografts, with negligible side effects. CONCLUSION: Our result suggests that NP-TPGS-SFB may be a novel approach for enhanced therapy of HCC with promising potential.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Dendrimers/chemistry , Drug Delivery Systems/methods , Liver Neoplasms/drug therapy , Nanoparticles/administration & dosage , Sorafenib/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Carcinoma, Hepatocellular/pathology , Dendrimers/pharmacokinetics , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Mice , Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacokinetics , Vitamin E/chemistry , Xenograft Model Antitumor Assays
19.
Biochem Pharmacol ; 177: 114023, 2020 07.
Article in English | MEDLINE | ID: mdl-32413426

ABSTRACT

Cisplatin is the most commonly used chemotherapeutic drug for nasopharyngeal carcinoma (NPC), while its side effects are often intolerable. Lobaplatin, as an effective third-generation platinum with fewer adverse reactions and less platinum cross-resistance, has been considered as a good alternative to cisplatin after cisplatin's failure (relapse or metastasis) in the treatment of NPC. However, the anti-NPC mechanism of lobaplatin remains largely unknown. In present study, 50% inhibiting concentration (IC50) of lobaplatin for NPC cells is found to be similar to that of cisplatin. 10 µM and 20 µM lobaplatin caused obvious gasdermin-E (GSDME)-mediated pyroptosis by activating caspase-3. Moreover, we found lobaplatin induced proteasomal degradation of cell inhibitor of apoptosis protein-1/2 (cIAP1/2). And these pyroptotic phenomena could be suppressed by the recovery of cIAP1/2, suggesting that cIAP1/2 are critical in lobaplatin-induced pyroptosis. Further inhibition of cIAP1/2 by birinapant (an antagonist of cIAP1/2) dramatically enhanced pyroptosis induced by lobaplatin in vitro and in vivo, which was consistent with the combination with cisplatin. Importantly, this synergistic pyroptotic effect were suppressed by the inhibition of Ripoptosome (RIPK1/Caspase-8/FADD), reactive oxygen species (ROS) and caspase-3 cleavage, and were independent of phosphorylation of JNK and NF-κB signal. Our data reveal that cIAP1/2 play important roles in lobaplatin-induced NPC cell pyroptosis, and this anti-NPC effect can be significantly potentiated by cIAP1/2 antagonist birinapant through regulating the formation of Ripoptosome and the generation of ROS. These study provides a possibility to further reduce the platinum-related adverse events and chemoresistance of lobaplatin while maintaining satisfactory anti-NPC efficacy.


Subject(s)
Cyclobutanes/pharmacology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Organoplatinum Compounds/pharmacology , Pyroptosis/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Baculoviral IAP Repeat-Containing 3 Protein/antagonists & inhibitors , Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Caspase 8/metabolism , Cell Line, Tumor , Cyclobutanes/administration & dosage , Dipeptides/administration & dosage , Dipeptides/pharmacology , Fas-Associated Death Domain Protein/metabolism , Female , Humans , Indoles/administration & dosage , Indoles/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Mice, Inbred BALB C , Nasopharyngeal Carcinoma/pathology , Organoplatinum Compounds/administration & dosage , Pyroptosis/physiology , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
20.
Front Pharmacol ; 9: 119, 2018.
Article in English | MEDLINE | ID: mdl-29515445

ABSTRACT

The clinical applications of platinum-based antitumor agents are still largely limited by severe side effects as well as multidrug resistance (MDR). To solve these problems, we developed an 1,2-diaminocyclohexane-platinum(II) (DACHPt)-loaded nanoparticle (NP-TPGS-Pt) by self-assembly of poly(amidoamine)-polyglutamic acid-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PGlu-b-TPGS) and DACHPt. NP-TPGS-Pt showed robust stability and pH-responsive DACHPt release profile in vitro similar to the PEG-containing nanoparticle (NP-PEG-Pt). Meanwhile, in contrast with NP-PEG-Pt, NP-TPGS-Pt exhibited efficient nanoparticle-based cellular uptake by the Pt-resistant A549/DDP human lung cancer cells and caused much more cytotoxicity than free Oxaliplatin and NP-PEG-Pt. Finally, this NP-TPGS-Pt was proved to perform outstanding inhibition of Pt-resistant tumor growth, much superior than free Oxaliplatin and NP-PEG-Pt. Thus, this NP-TPGS-Pt provides a novel powerful nanomedicine platform for combatting multidrug resistant cancer.

SELECTION OF CITATIONS
SEARCH DETAIL