Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Drug Resist Updat ; 73: 101057, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266355

ABSTRACT

AIMS: Lung cancer is the leading cause of cancer mortality and lung adenocarcinoma (LUAD) accounts for more than half of all lung cancer cases. Tumor elimination is mostly hindered by drug resistance and the mechanisms remain to be explored in LUAD. METHODS: CRISPR screens in cell and murine models and single-cell RNA sequencing were conducted, which identified MAF bZIP transcription factor F (MAFF) as a critical factor regulating tumor growth and treatment resistance in LUAD. RNA and ChIP sequencing analyses were performed for transcriptional target expression and specific binding sites of MAFF. Functions of MAFF in inhibiting tumor growth and promoting cisplatin or irradiation efficacy were investigated using cellular and xenograft models. RESULTS: Patients with lung adenocarcinoma and reduced MAFF expression had worse clinical outcomes. MAFF inhibited tumor cell proliferation by regulating the expression of SLC7A11, CDK6, and CDKN2C, promoting ferroptosis and preventing cell cycle progression from G1 to S. MAFF also conferred tumor cells vulnerable to cisplatin-based or ionizing radiation treatments. MAFF reduction was a final event in the acquisition of cisplatin resistance of LUAD cells. The intracellular cAMP/PKA/CREB1 pathway upregulated MAFF in response to cisplatin-based or ionizing radiation treatments. CONCLUSIONS: MAFF suppresses tumor growth, and pharmacological agonists targeting MAFF may improve cisplatin or irradiation therapies for lung adenocarcinoma patients.


Subject(s)
Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Ferroptosis/genetics , Cell Line, Tumor , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Cell Proliferation , Cell Cycle , Nuclear Proteins/metabolism , Nuclear Proteins/therapeutic use , MafF Transcription Factor
2.
Article in English | MEDLINE | ID: mdl-38910153

ABSTRACT

PURPOSE: To validate the Graves ophthalmopathy quality of life (GO-QOL) questionnaire in screening DON and to construct an effective model. METHODS: A total of 194 GO patients were recruited and divided into DON and non-DON (mild and moderate-to-severe) groups. Eye examinations were performed, and quality of life was assessed by the GO-QOL questionnaire. The random forest, decision tree model, receiver operator characteristic (ROC) curve, accuracy and Brier score were determined by R software. RESULTS: In GO-QOL, age, best corrected visual acuity (BCVA), exophthalmos, CAS, severity, and Gorman score were found to be factors related to visual function scores. On the appearance scale, gender, duration of GO, BCVA, exophthalmos, CAS and severity of GO were relevant. Both the visual function scores and appearance scores were significantly lower in DON groups than in non-DON groups (33.18 ± 24.54 versus 81.26 ± 17.39, 60.08 ± 24.82 versus 76.14 ± 27.56). The sensitivity, specificity, and AUC of the visual function scores were 91.1%, 81.7% and 0.939, respectively Visual function scores were used to construct a decision tree model. The sensitivity, specificity, and AUC of the model were 92.9%, 88.0% and 0.941, respectively, with an accuracy of 89.7% and a Brier score of 0.024. CONCLUSIONS: Visual function scores were qualified as a screening method for DON, with a cutoff point of 58. A multifactorial screening model based on visual function scores was constructed.

3.
Article in English | MEDLINE | ID: mdl-38613579

ABSTRACT

PURPOSE: Although urgent orbital decompression surgery for sight-threatening Graves' orbitopathy unresponsive to available medical treatments continues to evolve, post-operative new-onset or worsened pre-operative strabismus or diplopia remains a significant complication. At present, the optimal surgical technique remains debatable. Here, we sought to compare long-term outcomes after balanced medial-lateral wall versus selective 3-wall decompression as an urgent treatment for unresponsive sight-threatening GO. METHODS: This retrospective study examined the post-operative outcome of 102 eyes (57 patients) that underwent urgent orbital decompression for sight-threatening GO. Treatment effectiveness was measured by visual acuity, proptosis, perimetry, and strabismus/diplopia, while fundus findings were detected by fundus color photography and optical coherence tomography and followed up for more than 12 months. RESULTS: Fifty-seven patients (102 orbits) with an average age of 52.7 ± 10.2 years were evaluated. Balanced medial-lateral wall (BMLW-OD) or selective 3-wall decompression(S3W-OD) were performed in 54 and 48 eyes, respectively. Twelve months after orbital decompression, all parameters significantly improved in both groups, including best-corrected visual acuity (BCVA), mean defect of visual field (VF-MD), pattern standard deviation of visual field (VF-PSD), and proptosis (all P < 0.01). However, new-onset esotropia occurred in 25.8% and 3.8% of patients who underwent BMLW-OD surgery or S3W-OD, respectively. Moreover, 6.5% and 38.5% of patients improved after decompression in the medial-lateral wall decompression group and the selective 3-wall decompression group, respectively. CONCLUSIONS: We demonstrated that S3W-OD provides a lower rate of new-onset strabismus/diplopia as compared with BMLW-OD surgery, while still allowing for satisfactory visual outcomes. TRIAL REGISTRATION NUMBER:  : NCT05627401. Date of registration: November 25, 2022.

4.
Phytochem Anal ; 35(1): 116-134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37798938

ABSTRACT

INTRODUCTION: Studies show that Polyporus umbellatus has some pharmacological effects in enhancing immunity and against gout. OBJECTIVES: We aimed to establish new techniques for extraction, biological activity screening, and preparation of xanthine oxidase inhibitors (XODIs) from P. umbellatus. METHODS: First, the extraction of P. umbellatus was investigated using the back propagation (BP) neural network genetic algorithm mathematical regression model, and the extraction variables were optimised to maximise P. umbellatus yield. Second, XODIs were rapidly screened using ultrafiltration, and the change of XOD activity was tested by enzymatic reaction kinetics experiment to reflect the inhibitory effect of active compounds on XOD. Meanwhile, the potential anti-gout effects of the obtained active substances were verified using molecular docking, molecular dynamics simulations, and network pharmacology analysis. Finally, with activity screening as guide, a high-speed countercurrent chromatography (HSCCC) method combined with consecutive injection and two-phase solvent system preparation using the UNIFAC mathematical model was successfully developed for separation and purification of XODIs, and the XODIs were identified using MS and NMR. RESULTS: The results verified that polyporusterone A, polyporusterone B, ergosta-4,6,8(14),22-tetraen-3-one, and ergosta-7,22-dien-3-one of P. umbellatus exhibited high biological affinity towards XOD. Their structures have been further identified by NMR, indicating that the method is effective and applicable for rapid screening and identification of XODIs. CONCLUSION: This study provides new ideas for the search for natural XODIs active ingredients, and the study provide valuable support for the further development of functional foods with potential therapeutic benefits.


Subject(s)
Polyporus , Xanthine Oxidase , Molecular Docking Simulation , Polyporus/chemistry , Enzyme Inhibitors/pharmacology
5.
Phytochem Anal ; 35(3): 599-616, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287705

ABSTRACT

INTRODUCTION: Accurate screening and targeted preparative isolation of active substances from natural medicines have long been technical challenges in natural medicine research. OBJECTIVES: This study outlines a new approach for improving the efficiency of natural product preparation, focusing on the rapid and accurate screening of potential active ingredients in Ganoderma lucidum and efficient preparation of lipoxidase inhibitors, with the aim of providing new ideas for the treatment of Alzheimer's disease with G. lucidum. METHODS: The medicinal plant G. lucidum was selected through ultrafiltration coupled with liquid chromatography and mass spectrometry (UF-LC-MS) and computer-assisted screening for lipoxygenase (LOX) inhibitors. In addition, the inhibitory effect of the active compounds on LOX was studied using enzymatic reaction kinetics, and the underlying mechanism is discussed. Finally, based on the earlier activity screening guidelines, the identified ligands were isolated and purified through complex chromatography (high-speed countercurrent chromatography and semi-preparative high-performance liquid chromatography). RESULTS: Five active ingredients, ganoderic acids A, B, C2, D2, and F, were identified and isolated from G. lucidum. We improved the efficiency and purity of active compound preparation using virtual computer screening and enzyme inhibition assays combined with complex chromatography. CONCLUSION: The innovative methods of UF-LC-MS, computer-aided screening, and complex chromatography provide powerful tools for screening and separating LOX inhibitors from complex matrices and provide a favourable platform for the large-scale production of bioactive substances and nutrients.


Subject(s)
Antineoplastic Agents , Reishi , Lipoxygenase Inhibitors/pharmacology , Chromatography, High Pressure Liquid , Countercurrent Distribution
6.
Phytochem Anal ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957046

ABSTRACT

INTRODUCTION: Sophora flavescens Aiton (Fabaceae), a ubiquitous plant species in Asia, contains a wide range of pharmacologically active compounds, such as flavonoids, with potential anti-Alzheimer's disease (anti-AD) effects. OBJECTIVES: The objective of the study is to develop a quaternity method for the screening, isolation, extraction optimization, and activity evaluation of acetylcholinesterase (AChE)-inhibiting compounds from S. flavescens to realize high-throughput screening of active substances in traditional Chinese medicine and to provide experimental data for the development of anti-AD drugs. METHODS: With AChE as the target molecule, affinity ultrafiltration and liquid chromatography-mass spectrometry were applied to screen for potential inhibitors of the enzyme in S. flavescens. Orthogonal array experiments combined with the multi-objective Non-Dominated Sorting Genetic Algorithm III was used for the first time to optimize the process for extracting the active substances. Enzyme inhibition kinetics and molecular docking studies were performed to verify the potential anti-AD effects of the active compounds. RESULTS: Five AChE-inhibiting compounds were identified: kushenol I, kurarinone, sophoraflavanone G, isokurarinone, and kushenol E. These were successfully separated at purities of 72.88%, 98.55%, 96.86%, 96.74%, and 95.84%, respectively, using the n-hexane/ethyl acetate/methanol/water (4.0/5.0/4.0/5.0, v/v/v/v), n-hexane/ethyl acetate/methanol/water (5.0/5.0/6.0/4.0, v/v/v/v), and n-hexane/ethyl acetate/methanol/water (4.9/5.1/5.7/4.3, v/v/v/v) mobile phase systems. Enzyme inhibition kinetics revealed that kushenol E had the best inhibitory effect. CONCLUSION: This study elucidates the mechanism of action of five active AChE inhibitors in S. flavescens and provides a theoretical basis for the screening and development of anti-AD and other therapeutic drugs.

7.
Angew Chem Int Ed Engl ; : e202409713, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031452

ABSTRACT

The introduction of precise pore defects into nanocarbon structures results in the emergence of distinct physicochemical characteristics. However, there is a lack of research on non-planar chiral nanographene involving precise pore defects. Herein, we have developed two analogues to the π-extended pentadecabenzo[9]helicene (EP9H) containing embedded pore defects. Each molecule, namely extended dodecabenzo[7]helicene (ED7H; 1) or extended nonabenzo[5]helicene (EN5H; 2), exhibits dual-state emission. Significantly, the value of |glum| of 1 is exceptionally high at 1.41 × 10-2 in solution and BCPL as 254 M-1 cm-1. In PMMA film, |glum| of 1 is 8.56 × 10-3, and in powder film, it is 5.00 × 10-3. This study demonstrates that nanocarbon molecules with pore defects exhibit dual-state emission properties while maintaining quite good chiral luminescence properties. It was distinguished from the aggregation-caused quenching (ACQ) effect corresponding to the nanocarbon without embedded defect. Incorporating pore defects into chiral nanocarbon molecules also simplifies the synthesis process and enhances the solubility of the resulting product. These findings suggest that the introduction of pore defects can be a viable approach to improve nanocarbon molecules.

8.
J Am Chem Soc ; 145(25): 14010-14018, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37327391

ABSTRACT

Controllable solid-state transformations can provide a basis for novel functional materials. Herein, we report a series of solid-state systems that can be readily transformed between amorphous, co-crystalline, and mixed crystalline states via grinding or exposure to solvent vapors. The present solid materials were constructed using an all-hydrocarbon macrocycle, cyclo[8](1,3-(4,6-dimethyl)benzene) (D4d-CDMB-8) (host), and neutral aggregation-caused quenching dyes (guests), including 9,10-dibromoanthracene (1), 1,8-naphtholactam (2), diisobutyl perylene-3,9-dicarboxylate (3), 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (4), 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (5), and 4-imino-3-(pyridin-2-yl)-4H-quinolizine-1-carbonitrile (6). Seven co-crystals and six amorphous materials were obtained via host-guest complexation. Most of these materials displayed turn-on fluorescence emission (up to 20-fold enhancement relative to the corresponding solid-state guests). The interconversion between amorphous, co-crystalline states, and crystalline mixtures could be induced by exposure to solvent vapors or by subjecting to grinding. The transformations could be monitored readily by means of single-crystal and powder X-ray diffraction analyses, as well as solid-state fluorescent emission spectroscopy. The externally induced structural interconversions resulted in time-dependent fluorescence changes. This allowed sets of privileged number array codes to be generated.

9.
Respir Res ; 24(1): 277, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957645

ABSTRACT

Ferroptosis is a type of regulated cell death characterized by iron accumulation and lipid peroxidation. The molecular mechanisms underlying ferroptosis regulation in non-small cell lung cancer (NSCLC) are poorly understood. In this study, we found that protein kinase A (PKA) inhibition enhanced ferroptosis susceptibility in NSCLC cells, as evidenced by reduced cell viability and increased lipid peroxidation. We further identified cAMP-responsive element protein 1 (CREB1), a transcription factor and a substrate of PKA, as a key regulator of ferroptosis. Knockdown of CREB1 sensitized NSCLC cells to ferroptosis inducers (FINs) and abolished the effects of PKA inhibitor and agonist, revealing the pivotal role of CREB1 in ferroptosis regulation. Using a high-throughput screening approach and subsequent validation by chromatin immunoprecipitation (ChIP) and dual-luciferase assays, we discovered that CREB1 transcriptionally activated stearoyl-CoA desaturase (SCD), an enzyme that catalyzes the conversion of saturated fatty acids to monounsaturated fatty acids. SCD conferred ferroptosis resistance by decreasing the availability of polyunsaturated fatty acids for lipid peroxidation, and its overexpression rescued the effect of CREB1 knockdown on ferroptosis in vitro. Besides, CREB1 knockdown suppressed xenograft tumor growth in the presence of Imidazole Ketone Erastin (IKE), a potent FIN, and this effect was reversed by SCD. Finally, we showed that high expression of CREB1 was associated with poor prognosis in NSCLC patients from public datasets and our institution. Collectively, this study illustrates the effect of PKA/CREB1/SCD axis in regulating ferroptosis of NSCLC, targeting this pathway may provide new strategies for treating NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Ferroptosis/genetics , Lipid Peroxidation , Lung Neoplasms/genetics
10.
Pharmacol Res ; 194: 106819, 2023 08.
Article in English | MEDLINE | ID: mdl-37321467

ABSTRACT

Lung cancer is the main reason for cancer-associated death globally, and lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Recently, AGRN is considered playing an vital role in the development of some cancers. However, the regulatory effects and mechanisms of AGRN in LUAD remain elusive. In this study, we clarified the significant upregulation of AGRN expression in LUAD by single-cell RNA sequencing combined with immunohistochemistry. Besides, we confirmed that LUAD patients with high AGRN expression are more susceptible to lymph node metastases and have a worse prognosis by a retrospective study of 120 LUAD patients. Next, we demonstrated that AGRN directly interact with NOTCH1, which results in the release of the intracellular structural domain of NOTCH1 and the subsequent activation of the NOTCH pathway. Moreover, we also found that AGRN promotes proliferation, migration, invasion, EMT and tumorigenesis of LUAD cells in vitro and in vivo, and that these effects are reversed by blocking the NOTCH pathway. Furthermore, we prepared several antibodies targeting AGRN, and clarify that Anti-AGRN antibody treatment could significantly inhibit proliferation and promote apoptosis of tumor cells. Our study highlights the important role and regulatory mechanism of AGRN in LUAD development and progression, and suggests that antibodies targeting AGRN have therapeutic potential for LUAD. We also provide theoretical and experimental evidence for further development of monoclonal antibodies targeting AGRN.


Subject(s)
Adenocarcinoma of Lung , Agrin , Lung Neoplasms , Humans , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Retrospective Studies , Signal Transduction , Agrin/metabolism , Receptor, Notch1/metabolism
11.
J Sep Sci ; 46(4): e2200812, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36502278

ABSTRACT

In this study, an efficient method that employs 5-lipoxygenase and acetylcholinesterase as biological target molecules in receptor-ligand affinity ultrafiltration-liquid chromatography was developed for the screening of enzyme inhibitors derived from the Astragalus membranaceus stems and leaves. The effects of the extraction time, number of extraction cycles, ethanol concentration, and liquid-solid ratio on the total yield of the target compounds were investigated using response surface methodology, and the bioactive components were isolated using a combination of semi-preparative high-performance liquid chromatography and high-speed countercurrent chromatography via a two-phase solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:6:2:6, v/v/v/v). Subsequently, 10 naturally-occurring bioactive components in the Astragalus membranaceus stems and leaves, including wogonin, ononin, isoquercitrin, calycosin-7-glucoside, 3-hydroxy-9,10-dimethoxyptercarpan, hyperoside, 7,2'-dihydroxy-3',4'-dimethoxyisoflavan, baicalein, calycosin, and soyasaponin, were screened using affinity ultrafiltration to determine their potential effects against Alzheimer's disease. Consequently, all target compounds had purities higher than 95.0%, and the potential anti-Alzheimer's disease effect of the obtained bioactive compounds was verified using molecular docking analysis. Based on the results, the back-to-back screening of complex enzyme inhibitors and separation of the target bioactive compounds using complex chromatography could provide a new approach to the discovery and preparation of natural active ingredients.


Subject(s)
Acetylcholinesterase , Astragalus propinquus , Astragalus propinquus/chemistry , Cholinesterase Inhibitors , Arachidonate 5-Lipoxygenase , Molecular Docking Simulation , Chromatography, High Pressure Liquid/methods , Countercurrent Distribution/methods
12.
Graefes Arch Clin Exp Ophthalmol ; 261(9): 2669-2678, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37103624

ABSTRACT

PURPOSE: To investigate color vision deficiency and the value of Hardy-Rand-Rittler (HRR) color plates in monitoring dysthyroid optic neuropathy (DON) to improve the diagnosis of DON. METHODS: The participants were divided into DON and non-DON (mild and moderate-to-severe) groups. All the subjects underwent HRR color examination and comprehensive ophthalmic examinations. The random forest and decision tree models based on the HRR score were constructed by R software. The ROC curve and accuracy of different models in diagnosing DON were calculated and compared. RESULTS: Thirty DON patients (57 eyes) and sixty non-DON patients (120 eyes) were enrolled. The HRR score was lower in DON patients than in non-DON patients (12.1 ± 6.2 versus 18.7 ± 1.8, p < 0.001). The major color deficiency was red-green deficiency in DON using HRR test. The HRR score, CAS, RNFL, and AP100 were found to be important factors in predicting DON from random forest and selected by decision tree to construct the multifactor model. The sensitivity, specificity, and the area under the curve (AUC) of the HRR score were 86%, 72%, and 0.87, respectively. The HRR score decision tree had a sensitivity, specificity, and AUC of 93%, 57%, and 0.75, respectively, with an accuracy of 82%. The data of the multifactor decision tree were 90%, 89%, and 0.93 for sensitivity, specificity, and AUC, respectively, with an accuracy of 91%. CONCLUSION: The HRR test was valid as screening method for DON. The multifactor decision tree based on the HRR test improved the diagnostic efficacy for DON. An HRR score of less than 12 and red-green deficiency may be characteristic of DON.


Subject(s)
Color Vision Defects , Color Vision , Graves Ophthalmopathy , Optic Nerve Diseases , Humans , Color Perception Tests/methods , Color Vision Defects/diagnosis , ROC Curve , Optic Nerve Diseases/diagnosis
13.
Nucleic Acids Res ; 49(D1): D1405-D1412, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33021671

ABSTRACT

Distinguishing the few disease-related variants from a massive number of passenger variants is a major challenge. Variants affecting RNA modifications that play critical roles in many aspects of RNA metabolism have recently been linked to many human diseases, such as cancers. Evaluating the effect of genetic variants on RNA modifications will provide a new perspective for understanding the pathogenic mechanism of human diseases. Previously, we developed a database called 'm6AVar' to host variants associated with m6A, one of the most prevalent RNA modifications in eukaryotes. To host all RNA modification (RM)-associated variants, here we present an updated version of m6AVar renamed RMVar (http://rmvar.renlab.org). In this update, RMVar contains 1 678 126 RM-associated variants for 9 kinds of RNA modifications, namely m6A, m6Am, m1A, pseudouridine, m5C, m5U, 2'-O-Me, A-to-I and m7G, at three confidence levels. Moreover, RBP binding regions, miRNA targets, splicing events and circRNAs were integrated to assist investigations of the effects of RM-associated variants on posttranscriptional regulation. In addition, disease-related information was integrated from ClinVar and other genome-wide association studies (GWAS) to investigate the relationship between RM-associated variants and diseases. We expect that RMVar may boost further functional studies on genetic variants affecting RNA modifications.


Subject(s)
Databases, Genetic , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA Processing, Post-Transcriptional , RNA, Neoplasm/genetics , Alternative Splicing , Computer Graphics , Humans , Internet , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Neoplasms/metabolism , Neoplasms/pathology , Polymorphism, Single Nucleotide , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Neoplasm/classification , RNA, Neoplasm/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Software , Transcriptome
14.
Mar Drugs ; 21(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37103375

ABSTRACT

Microorganisms are the dominating source of food and nutrition for sponges and play an important role in sponge structure, chemical defense, excretion and evolution. In recent years, plentiful secondary metabolites with novel structures and specific activities have been identified from sponge-associated microorganisms. Additionally, as the phenomenon of the drug resistance of pathogenic bacteria is becoming more and more common, it is urgent to discover new antimicrobial agents. In this paper, we reviewed 270 secondary metabolites with potential antimicrobial activity against a variety of pathogenic strains reported in the literature from 2012 to 2022. Among them, 68.5% were derived from fungi, 23.3% originated from actinomycetes, 3.7% were obtained from other bacteria and 4.4% were discovered using the co-culture method. The structures of these compounds include terpenoids (13%), polyketides (51.9%), alkaloids (17.4%), peptides (11.5%), glucosides (3.3%), etc. Significantly, there are 124 new compounds and 146 known compounds, 55 of which have antifungal activity in addition to antipathogenic bacteria. This review will provide a theoretical basis for the further development of antimicrobial drugs.


Subject(s)
Anti-Infective Agents , Biological Products , Porifera , Animals , Biological Products/chemistry , Anti-Infective Agents/chemistry , Antifungal Agents/metabolism , Fungi , Bacteria/metabolism
15.
Clin Exp Ophthalmol ; 51(5): 453-461, 2023 07.
Article in English | MEDLINE | ID: mdl-37084233

ABSTRACT

BACKGROUND: Current modalities for diagnosing carotid cavernous fistula (CCF) are inaccurate in analysing retinal microcirculations and nerve fibre changes. Retinal microvascular and neural alterations occur in CCF patients and can be quantitatively measured using optical coherence tomography angiography (OCTA). We measured the neurovascular changes in the eyes of CCF patients and used OCTA as a supplementary method. METHODS: This cross-sectional study studied 54 eyes of 27 unilateral CCF subjects and 54 eyes of 27 healthy age- and sex-matched controls. OCTA parameters in the macula and optic nerve head (ONH) were analysed using a one-way analysis of variance with further Bonferroni corrections. Parameters with statistical significance were included in a multivariable binary logistic regression analysis and receiver operating characteristic (ROC) curves were generated. RESULTS: There was significantly less deep-vessel density (DVD) and ONH-associated capillary density in both eyes of CCF patients than in controls, while the differences between the affected and contralateral eyes were insignificant. The retinal nerve fibre layer and ganglion cell complex thickness were lower in the affected eyes than in the contralateral or controlled eyes. ROC curves identified DVD and ONH-associated capillary density as significant parameters in both eyes of CCF patients. CONCLUSION: The retinal microvascular circulation was affected in both eyes of unilateral CCF patients. Microvascular alterations occurred before retinal neural damage. This quantitative study suggests a supplementary measurement for diagnosing CCF and detecting early neurovascular impairments.


Subject(s)
Carotid-Cavernous Sinus Fistula , Optic Disk , Humans , Tomography, Optical Coherence/methods , Carotid-Cavernous Sinus Fistula/diagnosis , Cross-Sectional Studies , Angiography , Optic Disk/blood supply , Fluorescein Angiography/methods , Retinal Vessels
16.
Waste Manag Res ; 41(9): 1435-1444, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36951008

ABSTRACT

Black soldier fly larvae (BSFL) hold great promise for sustainable management of meat and bone meal (MBM), a kind of organic waste. Harvested BSFL frass can be used as soil amendment or organic fertilizer. This study evaluated the quality and microbial profile in the frass of BSFL, fed with fish MBM containing 0% (CK), 1% (T1), 2% (T2) and 3% (T3) of rice straw. Results suggested straw addition into fish MBM had no significant impacts on BSFL weight; however, straw addition remarkably affected waste reduction and conversion efficiency, as well as physicochemical properties including electric conductivity, organic matter (OM) and total phosphorus contents in frass. Fourier transform infrared analysis indicated that increasing levels of cellulose and lignin might not be fully degraded or transformed by BSFL when more straw was introduced into substrates. Straw addition had hardly significant influences on microbial richness or evenness in BSFL frass, only T3 treatment remarkably elevated the phylogenetic diversity value more than the control. Bacteroidetes, Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla. Genera Myroides, Acinetobacter and Paenochrobactrum maintained high abundances in all frass samples. Elements including OM, pH and Na were key factors in shaping the microbiological characteristics of BSFL frass. Our findings helped to understand the effects of fish MBM waste manipulation on BSFL frass qualities and contributed to the further application of BSFL frass.


Subject(s)
Diptera , Animals , Larva , Phylogeny , Meat
17.
Angew Chem Int Ed Engl ; 62(6): e202215556, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36478519

ABSTRACT

Lysophosphatidylcholine acyltransferase-1 (LPCAT1) plays a critical role in the remodeling of phosphatidylcholines (PCs) in cellular lipidome. However, evidence is scarce regarding its sn-selectivity, viz. the preference of assembling acyl-Coenzyme A (CoA) at the C1 or C2-hydroxyl on a glycerol backbone because of difficulty to quantify the thus-formed PC sn-isomers. We have established a multiplexed assay to measure both sn- and acyl-chain selectivity of LPCAT1 toward a mixture of acyl-CoAs by integrating isomer-resolving tandem mass spectrometry. Our findings reveal that LPCAT1 shows exclusive sn-1 specificity regardless of the identity of acyl-CoAs. We further confirm that elevated PC 18 : 1/16:0 relative to its sn-isomer results from an increased expression of LPCAT1 in human hepatocellular carcinoma (HCC) tissue as compared to normal liver tissue. MS imaging via desorption electrospray ionization of PC 18 : 1/16:0 thus enables visualization of HCC margins in human liver tissue at a molecular level.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Phosphatidylcholines/metabolism , Substrate Specificity , Tandem Mass Spectrometry
18.
Cancer Immunol Immunother ; 71(7): 1733-1746, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34837101

ABSTRACT

Metformin has been found to have inhibitory effects on a variety of tumors. However, its effects on non-small cell lung cancer (NSCLC) remain unclear. We demonstrated that metformin could inhibit the proliferation of A549 and H1299 cells. RNA transcriptome sequencing revealed that PDL1 was significantly downregulated in both cell types following treatment with metformin (P < 0.001). Jaspar analysis and chromatin immunoprecipitation showed that CEBPB could directly bind the promoter region of PDL1. Western blotting showed that protein expression of the isoforms CEBPB-LAP*, CEBPB-LAP, and CEBPB-LIP was significantly upregulated and the LIP/LAP ratio was increased. Gene chip analysis showed that PDL1 was significantly upregulated in A549-CEBPB-LAP cells and significantly downregulated in A549-CEBPB-LIP cells (P < 0.05) compared with CEBPB-NC cells. Dual-luciferase reporter gene assay showed that CEBPB-LAP overexpression could promote transcription of PDL1 and CEBPB-LIP overexpression could inhibit the process. Functional assays showed that the changes in CEBPB isoforms affected the function of NSCLC cells. Western blotting showed that metformin could regulate the function of NSCLC cells via AMPK-CEBPB-PDL1 signaling. Animal experiments showed that tumor growth was significantly inhibited by metformin, and atezolizumab and metformin had a synergistic effect on tumor growth. A total of 1247 patients were retrospectively analyzed, including 166 and 1081 patients in metformin and control groups, respectively. The positive rate of PDL1 was lower than that of the control group (HR = 0.338, 95% CI = 0.235-0.487; P < 0.001). In conclusion, metformin inhibited the proliferation of NSCLC cells and played an anti-tumor role in an AMPK-CEBPB-PDL1 signaling-dependent manner.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metformin , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Retrospective Studies , Signal Transduction
19.
J Transl Med ; 20(1): 171, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410350

ABSTRACT

OBJECTIVES: Platinum-based chemotherapies are currently the first-line treatment of non-small cell lung cancer. This study will improve our understanding of the causes of resistance to cisplatin, especially in lung adenocarcinoma (LUAD) and provide a reference for therapeutic decisions in clinical practice. METHODS: Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA) and Zhongshan hospital affiliated to Fudan University (zs-cohort) were used to identify the multi-omics differences related to platinum chemotherapy. Cisplatin-resistant mRNA and miRNA models were constructed by Logistic regression, classification and regression tree and C4.5 decision tree classification algorithm with previous feature selection performed via least absolute shrinkage and selection operator (LASSO). qRT-PCR and western-blotting of A549 and H358 cells, as well as single-cell Seq data of tumor samples were applied to verify the tendency of certain genes. RESULTS: 661 cell lines were divided into three groups according to the IC50 value of cisplatin, and the top 1/3 (220) with a small IC50 value were defined as the sensitive group while the last 1/3 (220) were enrolled in the insensitive group. TP53 was the most common mutation in the insensitive group, in contrast to TTN in the sensitive group. 1348 mRNA, 80 miRNA, and 15 metabolites were differentially expressed between 2 groups (P < 0.05). According to the LASSO penalized logistic modeling, 6 of the 1348 mRNAs, FOXA2, BATF3, SIX1, HOXA1, ZBTB38, IRF5, were selected as the associated features with cisplatin resistance and for the contribution of predictive mRNA model (all of adjusted P-values < 0.001). Three of 6 (BATF3, IRF5, ZBTB38) genes were finally verified in cell level and patients in zs-cohort. CONCLUSIONS: Somatic mutations, mRNA expressions, miRNA expressions, metabolites and methylation were related to the resistance of cisplatin. The models we created could help in the prediction of the reaction and prognosis of patients given platinum-based chemotherapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , Cisplatin/therapeutic use , Homeodomain Proteins , Humans , Interferon Regulatory Factors , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Machine Learning , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/therapeutic use
20.
BMC Infect Dis ; 22(1): 788, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36241980

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) has high seroprevalence, and its active infection is associated with several adverse prognoses in adult patients with acute respiratory distress syndrome (ARDS). However, the role of active CMV infection in ARDS-associated fibroproliferation is unknown. This study aimed at determining the association between active CMV infection and lung fibroproliferation in adult patients with ARDS. METHODS: We retrospectively reviewed the medical records of all adult patients with ARDS who were admitted to the intensive care unit (ICU) from January 2018 to December 2020 at a national university-affiliated hospital in China. Study subjects were divided into active and non-active CMV infection groups based on CMV DNAemia within a 28-day ICU hospitalization. Lung fibroproliferation was measured using chest high-resolution computed tomography (HRCT) and N-terminal peptide of serum procollagen III (NT-PCP-III) within the first 28 days of ICU admission. Pulmonary fibrosis, clinical features, laboratory findings, treatment measures, and clinical outcomes were compared between the two groups. RESULTS: Among the 87 ARDS patients included in this study, the incidence of active CMV infection was 16.1% within the 28-day ICU admission period. In logistic regression analyze, active CMV infection was found to be associated with higher pulmonary fibrogenesis, pulmonary fibrosis score, and NT-PCP-III level (P < 0.05). The duration of ICU stay in ARDS patients with active CMV infection was significantly higher than in those without active CMV infection (P < 0.05). CONCLUSIONS: Among adult patients with ARDS, active CMV infection was related to poor clinical outcomes. Active CMV infection was associated with ARDS-associated fibroproliferation. Prophylactic and preemptive use of anti-CMV agents on pulmonary fibrosis should be assessed to determine a consensus therapeutic strategy.


Subject(s)
Cytomegalovirus Infections , Pulmonary Fibrosis , Respiratory Distress Syndrome , Adult , Cytomegalovirus , Cytomegalovirus Infections/complications , Humans , Intensive Care Units , Lung , Procollagen , Pulmonary Fibrosis/etiology , Retrospective Studies , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL