ABSTRACT
Axially chiral C2-arylquinoline has been successfully constructed via asymmetric heteroannulation of alkynes catalyzed by chiral phosphoric acid with high yield and high enantioselectivity. Inspired by this intriguing work, theoretical calculations have been carried out, and the detailed reaction mechanism has been elaborated, in which the whole reaction can be divided into steps including hydrogen transfer, C-N bonding, annulation reaction and the final dehydration processes. The initial hydrogen-transfer reaction has two possible pathways, while the subsequent C-N bonding process has eight possible pathways. Then, after the annulation reaction and the final dehydration processes, the major product and byproduct were formed. QTAIM and IGMH analyses were used to illustrate the role of weak intermolecular interactions in the catalytic process, and the distortion/interaction and EDA analyses provided a deeper understanding of the origin of enantioselectivity. The calculated results are consistent with the experimental results. This work would provide valuable insights into asymmetric reactions catalyzed by chiral phosphoric acid.
ABSTRACT
The aryl-to-vinyl nickel 1,4-migration (1,4-Ni migration) reaction has been reported for the first time. The generated alkenyl Ni species undergo a reductive coupling reaction with unactivated brominated alkanes affording a series of trisubstituted olefins. This tandem reaction exhibits mild conditions, a broad substrate scope, high regioselectivity, and excellent Z/E stereoselectivity. A series of controlled experiments have shown that the critical 1,4-Ni migration process is reversible. In addition, the alkenyl nickel intermediates obtained after migration are highly Z/E stereoselective and do not undergo Z/E isomerization. The obtained trace isomerization products are caused by the instability of the product.
ABSTRACT
Cymbidium sinense (Jackson ex Andr.) Willd is a perennial terrestrial plant in the orchid family mainly distributed in China, Japan, India and Southeast Asia that occupies a strong position in the flower market due to its bright green leaves and fragrant flowers (Zhang et al. 2013). Cymbidium sinense is not only valued by people for its ornamental and economic value, but its roots have antiasthmatic medicinal properties (Ke et al. 2004). In August 2020, about 15% stem rot on two-year old C. sinense with varying severity was observed in five nursery gardens located in Enshi city (N 30° 16', E 109° 29'), Hubei province, China. Typical symptoms of C. sinense included roots and inner part of the pseudobulbs changing from white to brown and rotting. Leaves became brown and withered from bottom to top, and there was an obvious blight yellow halo at the junction of diseased and healthy tissue, which eventually caused the whole plant to wilt and die (Fig. 1d). To isolate the pathogen, a total of 15 leaf tissues from the disease-health junction (3 × 3 mm) from 5 individual plants (3 leaves/plant) with symptoms were surface sterilized with 75% ethanol for 30 s and 2% sodium hypochlorite (NaOCl) for 3 min. The sterilized tissue was rinsed three times with sterilized water, and then placed on potato dextrose agar (PDA) for incubation at 28°C in the dark for 5 days. Isolated colonies were subcultured by a hyphal tip protocol. Thirteen fungal isolates were obtained. Through preliminary pathogenicity tests, we found that ten isolates induced leaf blight. These ten isolates with pathogenicity showed similar morphological characteristics, with initial white-flocculent aerial mycelium that secreted a lavender pigment and produced colonies with an irregular edge after 3 days on PDA. The ten strains were cultured on PDA plates at 28â for 5 and 15 days to observe colony and conidial characteristics. The ten strains were identified as Fusarium based on morphological characteristics (Leslie and Summerell 2006). Strain ML0303 was selected for further identification. Macroconidia were falciform, hyaline, slightly pointed at both ends with two to four septa, 24.0 ± 5.6 µm × 4.7 ± 0.8 µm (n = 50). Microconidia were hyaline, oval, globose, with zero to one septum, 5.5 ± 1.3 µm × 2.2 ± 0.5 µm (n = 50) (Fig. 1c). Total genomic DNA of strain ML0303 was extracted with a CTAB protocol (Stenglein and Balatti 2006). The translation elongation factor (EF-1α), RNA polymerase II second largest subunit (RPB2) and ß-tubulin (Tub2) genes were amplified respectively using primer pairs EF1/EF2, RPB2-5F2/RPB2-7cR and T1/T22 respectively (O'Donnell. et al. 2010, O'Donnell. et al. 1997). The EF-1α, RPB2 and Tub2 (accession numbers-MW719874, OL614838, OL689398, respectively) gene sequences were submitted to GenBank. EF-1α, RPB2 and Tub2 sequences of ML0303 showed 99.5% - 100% identity respectively with Fusarium oxysporum in the Genbank and FUSARIUM-ID databases. The multilocus sequence data was used to infer a phylogenetic tree via a Neighbor-joining (NJ), Maximum-likelihood (ML) and Maximum-Parsimony(MP) together with reference sequences from GenBank. The topology of the three trees was similar; only the NJ tree is presented here. Strain ML0303 and F. oxysporum formed a clade supported with high values (NJ/ML/MP: 96,95,97). The results indicated that the fungus was F. oxysporum based on the phylogenetic analysis and BLASTn queries. For pathogenicity tests, conidia of strain ML0303 were collected by rinsing PDA plates. Two-year-old C. sinense grown in plastic pots filled with sterilized autoclaved sandy loam soil were used for the tests. Three pots (two plants/pot) were included in each treatment. Spore suspensions (106spores/ml) of strain ML0303 were used to irrigate the stem-zone of the plants, and sterile water was used as control. The two treatments were placed in a greenhouse and incubated at 28±2â with a 14-hour light/10-hour dark cycle. The experiment was repeated twice. After three weeks, stem rot symptoms were observed on C. sinense inoculated with ML0303, that were the as same as observed in the nursery (Fig. 1e-h). No symptoms were observed on the negative control. Fusarium oxysporum was re-isolated from the infected plants to fulfill Koch's postulates. Partial EF-1α and RPB2 gene sequences were used for molecular identification. Members of the FOSC are notorious for causing many diseases, which includes stem rot of Sulcorebutia heliosa and root rot of Torreya grandis (Garibaldi et al. 2020; Zhang et al. 2016). To our knowledge, this is the first report of stem rot by F. oxysporum on C. sinense in China. The finding of this pathogen provides a clear target for stem rot control.
ABSTRACT
CONTEXT: The reaction between Na and HF is a typical harpooning reaction which is of great interest due to its significance in understanding the elementary chemical reaction kinetics. This work aims to investigate the detailed reaction mechanisms of sodium with hydrogen fluoride and the adsorption of HF on the resultant NaF as well as the (NaF)4 tetramer. The results suggest that the reaction between Na and HF leads to the formation of sodium fluoride salt NaF and hydrogen gas. Na interacts with HF to form a complex HF···Na, and then the approaching of F atom of HF to Na results in a transition state H···F···Na. Accompanied by the broken of H-F bond, the bond forms between F and Na atoms as NaF, then the product NaF is yielded due to the removal of H atom. The resultant NaF can further form (NaF)4 tetramer. The interaction of NaF with HF leads to the complex NaF···HF; the form I as well as II of (NaF)4 can interact with HF to produce two complexes (i.e., (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF), but the form III of (NaF)4 can interact with HF to produce only one complex (NaF)4(III)···HF. These complexes were explored in terms of noncovalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses. NCI analyses confirm the existences of attractive interactions in the complexes HF···Na, NaF···HF, (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF, and (NaF)4(III)···HF. QTAIM analyses suggest that the F···Na interaction forms in the HF···Na complex while the F···H hydrogen bonds form in NaF···HF, (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF, and (NaF)4(III)···HF complexes. Natural bond orbital (NBO) analyses were also applied to analyze the intermolecular donor-acceptor orbital interactions in these complexes. These results would provide valuable insight into the chemical reaction of Na and HF and the adsorption interaction between sodium fluoride salt and HF. METHODS: The calculations were carried out at the M06-L/6-311++G(2d,2p) level of theory which were performed using the Gaussian16 program. Intrinsic reaction coordinate (IRC) calculations were carried out at the same level of theory to confirm that the obtained transition state was true. The molecular surface electrostatic potential (MSEP) was employed to understand how the complex forms. Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) analysis was used to know the topology parameters at bond critical points (BCPs) and intermolecular interactions in the complex and intermediate. The topology parameters and the BCP plots were obtained by the Multiwfn software.
ABSTRACT
To investigate the polymorphism in 4-phenylamino-benzoic acids (4-PABAs) in general, and the effect on the polymorphism of these compounds exerted by substitution in particular, a series of 4-PABAs (1-8) varying in the substitution position and pattern were synthesized, and their polymorphic behavior was investigated for the first time. A relatively comprehensive polymorph screening led to the discovery of two forms, one solvent-free and the other solvate, for compounds 1, 3 and 8, and one form for the other compounds. The crystal structures were determined by single-crystal XRD. All the 4-PABAs in the crystal structures are highly twisted, and all the solvent-free crystals are based on the conventional acid-acid dimer motif, except for 2, which has a rarely observed acid-acid catemer motif. Two of the solvates (1-S and 8-S) have pyridine in the lattice while the other (3-S) has dichloromethane. The observation indicates that neither conformational flexibility or substitution alone nor the combination of both leads to polymorphism in these compounds, which is in dramatic contrast to the polymorphism of fenamic acids. The thermal properties of each system were investigated by differential scanning calorimetry and desolvation of the solvates was studied by thermogravimetric analysis. Hirshfeld surface analysis and molecular dynamics simulation were performed to study the mechanism of polymorphism and the intermolecular interactions contributing to the formation and stability of each crystal form.
ABSTRACT
The annulation reactions of benzoamidyl radicals with alkenes were realized under visible light irradiation with fac-Ir(ppy)3 as catalyst and N-aminopyridinium salts as benzoamidyl radical precursors. The reaction can deliver two distinct types of products: in the case of vinyl arenes, [3 + 2] annulation product dihydrooxazoles were yielded exclusively; when alkyl-substituted alkenes were used, on the other hand, it afforded [4 + 2] annulation product dihydroisoquinolinones. Factors determining the reaction consequence were elucidated by DFT calculations.
ABSTRACT
Fusarium oxysporum KB-3 had been reported as a mycorrhizal fungus of Bletilla striata, which can promote the seed germination and vegetative growth. Endohyphal bacteria were demonstrated in the hyphae of the KB-3 by 16S rDNA PCR amplification and SYTO-9 fluorescent nucleic acid staining. A strain Klebsiella aerogenes KE-1 was isolated and identified based on the multilocus sequence analysis. The endohyphal bacterium was successfully removed from the wild strain KB-3 (KB-3-), and GFP-labeled KE-1 was also transferred to the cured strain KB-3- (KB-3+). The production of indole-3-acetic acid (IAA) in the culturing broths of strains of KE-1, KB-3, KB-3-, and KB-3+ was examined by HPLC. Their IAA productions were estimated using Salkowski colorimetric technique. The highest concentrations of IAA were 76.9 (at 48 h after inoculation), 31.4, 9.6, and 19.4 µg/ml (at 60 h after inoculation), respectively. Similarly, the three fungal cultural broths exhibited plant promoting abilities on the tomato root and stem growth. The results indicated that the ability of mycorrhizal Fusarium strain KB-3 to promote plant growth was enhanced because its endohyphal bacterium, Klebsiella aerogenes KE-1, produced a certain amount of IAA.