Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 642
Filter
Add more filters

Publication year range
1.
Cell ; 159(3): 469-70, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25417097

ABSTRACT

Thaiss et al. report that the intestinal microbiota undergoes diurnal oscillation, which is controlled by host feeding time. Disruption of the host circadian clock induces dysbiosis, which is associated with host metabolic disorders.


Subject(s)
Circadian Clocks , Circadian Rhythm , Glucose Intolerance , Microbiota , Animals , Humans
2.
Nano Lett ; 24(22): 6730-6736, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38787290

ABSTRACT

We theoretically show the asymmetric spin wave transmission in a coupled waveguide-skyrmion structure, where the skyrmion acts as an effective nanocavity allowing the whispering gallery modes for magnons. The asymmetry originates from the chiral spin wave mode localized in the circular skyrmion wall. By inputting two-tone excitations and mixing them in the skyrmion wall, we observe a unidirectional output magnon frequency comb propagating in the waveguide with a record number of teeth (>50). This coupled waveguide-cavity structure turns out to be a universal paradigm for generating asymmetric magnon frequency combs, where the cavity can be generalized to other magnetic structures that support the whispering gallery mode of magnons. Our results advance the understanding of the nonlinear interaction between magnons and magnetic textures and open a new pathway to exploring the asymmetric spin wave transmission and to steering the magnon frequency comb.

3.
Immunol Cell Biol ; 102(4): 256-268, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361210

ABSTRACT

We explored the frequency of CD14-CD10-CD45+HLA-DR-SSC++ neutrophils (CD10- neutrophils) in patients with non-Hodgkin's lymphoma (NHL), and their immunologic characteristics and clinical significance. Patients with NHL who were newly diagnosed (NDP; n = 33), in remission (RMP; n = 28) and relapsed (RLP; n = 29) were included, and 47 volunteers were recruited as healthy controls (HCs). The frequency of CD10- neutrophils in the peripheral blood from HC and patients with NHL was detected. CD10- and CD10+ neutrophils were sorted, and their cytology was analyzed. CD3+ T cells were also isolated and cultured with the autologous CD10- or CD10+ neutrophils, after which the proliferation and death rates of T cells were determined. The levels of arginase-1 (Arg-1) and reactive oxygen species (ROS) in CD10+ or CD10- neutrophils were examined. Few CD10- neutrophils were detected in HCs but were significantly elevated in patients with NHL, especially in NDP and RLP. In addition, CD10- neutrophils in NDP with advanced stage and high risk were markedly higher than those in NDP with limited stage and low risk. In RMP and RLP, the relapse-free survival and overall survival in patients with high CD10- neutrophils were shorter than those with low CD10- neutrophils. CD10- neutrophils from patients with NHL, which mainly consist of immature neutrophils, inhibit T-cell proliferation and facilitate T-cell death. Furthermore, a significant increase was observed in Arg-1 expression, along with an increase to a certain extent in ROS. CD10- neutrophils in patients with NHL have characteristics of myeloid-derived suppressor cells and may be related to disease progression and poor prognosis.


Subject(s)
Lymphoma, Non-Hodgkin , Myeloid-Derived Suppressor Cells , Humans , Neutrophils , Reactive Oxygen Species , Lymphoma, Non-Hodgkin/pathology , HLA-DR Antigens/metabolism , Disease Progression
4.
J Transl Med ; 22(1): 613, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956649

ABSTRACT

BACKGROUND: CD19-targeted chimeric antigen receptor T (CAR-T) cell therapy stands out as a revolutionary intervention, exhibiting remarkable remission rates in patients with refractory/relapsed (R/R) B-cell malignancies. However, the potential side effects of therapy, particularly cytokine release syndrome (CRS) and infections, pose significant challenges due to their overlapping clinical features. Promptly distinguishing between CRS and infection post CD19 target CAR-T cell infusion (CTI) remains a clinical dilemma. Our study aimed to analyze the incidence of infections and identify key indicators for early infection detection in febrile patients within 30 days post-CTI for B-cell malignancies. METHODS: In this retrospective cohort study, a cohort of 104 consecutive patients with R/R B-cell malignancies who underwent CAR-T therapy was reviewed. Clinical data including age, gender, CRS, ICANS, treatment history, infection incidence, and treatment responses were collected. Serum biomarkers procalcitonin (PCT), interleukin-6 (IL-6), and C-reactive protein (CRP) levels were analyzed using chemiluminescent assays. Statistical analyses employed Pearson's Chi-square test, t-test, Mann-Whitney U-test, Kaplan-Meier survival analysis, Cox proportional hazards regression model, Spearman rank correlation, and receiver operating characteristic (ROC) curve analysis to evaluate diagnostic accuracy and develop predictive models through multivariate logistic regression. RESULTS: In this study, 38 patients (36.5%) experienced infections (30 bacterial, 5 fungal, and 3 viral) within the first 30 days of CAR T-cell infusion. In general, bacterial, fungal, and viral infections were detected at a median of 7, 8, and 9 days, respectively, after CAR T-cell infusion. Prior allogeneic hematopoietic cell transplantation (HCT) was an independent risk factor for infection (Hazard Ratio [HR]: 4.432 [1.262-15.565], P = 0.020). Furthermore, CRS was an independent risk factor for both infection ((HR: 2.903 [1.577-5.345], P < 0.001) and severe infection (9.040 [2.256-36.232], P < 0.001). Serum PCT, IL-6, and CRP were valuable in early infection prediction post-CAR-T therapy, particularly PCT with the highest area under the ROC curve (AUC) of 0.897. A diagnostic model incorporating PCT and CRP demonstrated an AUC of 0.903 with sensitivity and specificity above 83%. For severe infections, a model including CRS severity and PCT showed an exceptional AUC of 0.991 with perfect sensitivity and high specificity. Based on the aforementioned analysis, we proposed a workflow for the rapid identification of early infection during CAR-T cell therapy. CONCLUSIONS: CRS and prior allogeneic HCT are independent infection risk factors post-CTI in febrile B-cell malignancy patients. Our identification of novel models using PCT and CRP for predicting infection, and PCT and CRS for predicting severe infection, offers potential to guide therapeutic decisions and enhance the efficacy of CAR-T cell therapy in the future.


Subject(s)
Antigens, CD19 , Fever , Immunotherapy, Adoptive , Humans , Female , Male , Middle Aged , Immunotherapy, Adoptive/methods , Adult , Antigens, CD19/metabolism , Infections/blood , Aged , ROC Curve , Young Adult , Retrospective Studies
5.
J Immunol ; 209(6): 1156-1164, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35977799

ABSTRACT

There is no effective treatment for acute liver failure (ALF) except for an artificial liver support system (ALSS) and liver transplant. Bruton tyrosine kinase (Btk) plays important immunoregulatory roles in the inflammatory diseases, but its possible function in ALF remains to be characterized. In this study, we detected the phosphorylation level of Btk in ALF mouse liver and analyzed the protective effects of Btk inhibitor on survival rate and liver damage in ALF mouse models. We measured the expression levels of various inflammatory cytokines in the ALF mouse liver and primary human monocytes. In addition, we examined the expression of the NLRP3 inflammasome in mouse models with or without Btk inhibition. Clinically, we observed the dynamic changes of Btk expression in PBMCs of ALSS-treated patients. Our results showed that Btk was upregulated significantly in the experimental ALF mouse models and that Btk inhibition alleviated liver injury and reduced the mortality in these models. The protective effect of Btk inhibitors on ALF mice partially depended on the suppression of NLRP3 inflammasome signaling. Clinical investigations revealed that the dynamic changes of Btk expression in PBMCs could predict the effect of ALSS treatment. Our work shows that Btk inhibition is an effective therapeutic strategy for ALF. Moreover, Btk is a useful indicator to predict the therapeutic effect of ALSS on liver failure, which might have great value in clinical practice.


Subject(s)
Inflammasomes , Liver Failure, Acute , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Down-Regulation , Humans , Inflammasomes/metabolism , Liver Failure, Acute/drug therapy , Liver Failure, Acute/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
6.
Nucleic Acids Res ; 50(14): 8107-8126, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35848907

ABSTRACT

Non-CpG PS-ASOs can activate the innate immune system, leading to undesired outcomes. This response can vary-in part-as a function of 2'modifications and sequence. Here we investigated the molecular steps involved in the varied effects of PS-ASOs on the innate immune system. We found that pro-inflammatory PS-ASOs require TLR9 signaling based on the experimental systems used. However, the innate immunity of PS-ASOs does not correlate with their binding affinity with TLR9. Furthermore, the innate immune responses of pro-inflammatory PS-ASOs were reduced by coincubation with non-inflammatory PS-ASOs, suggesting that both pro-inflammatory and non-inflammatory PS-ASOs can interact with TLR9. We show that the kinetics of the PS-ASO innate immune responses can vary, which we speculate may be due to the existence of alternative PS-ASO binding sites on TLR9, leading to full, partial, or no activation of the pathway. In addition, we found that several extracellular proteins, including HMGB1, S100A8 and HRG, enhance the innate immune responses of PS-ASOs. Reduction of the binding affinity by reducing the PS content of PS-ASOs decreased innate immune responses, suggesting that PS-ASO-protein complexes may be sensed by TLR9. These findings thus provide critical information concerning how PS-ASOs can interact with and activate TLR9.


Subject(s)
Immunity, Innate , Oligonucleotides, Antisense , Phosphorothioate Oligonucleotides , Toll-Like Receptor 9 , Calgranulin A , Endocytosis , HMGB1 Protein , Humans , Oligonucleotides, Antisense/metabolism , Phosphorothioate Oligonucleotides/metabolism , Proteins , Toll-Like Receptor 9/metabolism
7.
Nucleic Acids Res ; 50(1): 522-535, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34904671

ABSTRACT

The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified 'ß-clasp' structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.


Subject(s)
DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Dimerization , Humans , Models, Molecular , Protein Conformation , RNA Splicing
8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495330

ABSTRACT

Multiplex assays, involving the simultaneous use of multiple circulating tumor DNA (ctDNA) markers, can improve the performance of liquid biopsies so that they are highly predictive of cancer recurrence. We have developed a single-tube methylation-specific quantitative PCR assay (mqMSP) that uses 10 different methylation markers and is capable of quantitative analysis of plasma samples with as little as 0.05% tumor DNA. In a cohort of 179 plasma samples from colorectal cancer (CRC) patients, adenoma patients, and healthy controls, the sensitivity and specificity of the mqMSP assay were 84.9% and 83.3%, respectively. In a head-to-head comparative study, the mqMSP assay also performed better for detecting early-stage (stage I and II) and premalignant polyps than a published SEPT9 assay. In an independent longitudinal cohort of 182 plasma samples (preoperative, postoperative, and follow-up) from 82 CRC patients, the mqMSP assay detected ctDNA in 73 (89.0%) of the preoperative plasma samples. Postoperative detection of ctDNA (within 2 wk of surgery) identified 11 of the 20 recurrence patients and was associated with poorer recurrence-free survival (hazard ratio, 4.20; P = 0.0005). With subsequent longitudinal monitoring, 14 patients (70%) had detectable ctDNA before recurrence, with a median lead time of 8.0 mo earlier than seen with radiologic imaging. The mqMSP assay is cost-effective and easily implementable for routine clinical monitoring of CRC recurrence, which can lead to better patient management after surgery.


Subject(s)
Biomarkers, Tumor/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/surgery , DNA Methylation/genetics , Liquid Biopsy , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinoembryonic Antigen/metabolism , Circulating Tumor DNA/blood , Cohort Studies , Colonic Neoplasms/blood , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mutation/genetics , Postoperative Care , Reproducibility of Results , Septins/genetics
9.
Ecotoxicol Environ Saf ; 273: 116136, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387142

ABSTRACT

As a dominating air pollutant, atmospheric fine particulate matter within 2.5 µm in diameter (PM2.5) has attracted increasing attention from the researchers all over the world, which will lead to various adverse effects on the central nervous system (CNS), yet the potential mechanism is unclear. In this study, the microglia (BV2 cell line) were exposed to different concentrations of PM2.5 (5, 10 and 20 µg/cm2) for 24 h. It was found that PM2.5 could result in adverse effects on microglia such as decreased cell viability, structural damage and even cell death. And it was reported that long non-coding RNAs (lncRNAs) could participate in multitudinous neurological diseases. Therefore, the microarray analysis was conducted in order to disclose the underlying neurotoxicity mechanism of PM2.5 by ascertaining the differentially expressed lncRNAs (DElncRNAs). The consequences indicated that the DElncRNAs were enriched in various biological pathways, including ferroptosis, IL-17 signaling pathway and NOD-like receptor signaling pathway. Moreover, the cis- and trans-regulated mRNAs by DElncRNAs as well as the corresponding transcriptional factors (TFs) were observed, such as CEBPA, MYC, MEIS1 and KLF4. In summary, our study supplies some candidate libraries and potential preventive target against PM2.5-induced toxicity through targeting lncRNAs. Furthermore, the post-transcriptional regulation will contribute to the future research on PM2.5-induced neurotoxicity.


Subject(s)
Air Pollutants , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Microglia/metabolism , Particulate Matter/toxicity , Particulate Matter/metabolism , Air Pollutants/toxicity , Microarray Analysis
10.
Phytother Res ; 38(3): 1278-1293, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38191199

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a chronic, progressive, and lethal lung disease with few treatments. Formononetin (FMN) is a clinical preparation extract with extensive pharmacological actions. However, its effect on COPD remains unknown. This study aimed to explore the effect and underlying mechanisms of FMN on COPD. A mouse model of COPD was established by exposure to cigarette smoke (CS) for 24 weeks. In addition, bronchial epithelial BEAS-2B cells were treated with CS extract (CSE) for 24 h to explore the in vitro effect of FMN. FMN significantly improved lung function and attenuated pathological lung damage. FMN treatment reduced inflammatory cell infiltration and pro-inflammatory cytokines secretion. FMN also suppressed apoptosis by regulating apoptosis-associated proteins. Moreover, FMN relieved CS-induced endoplasmic reticulum (ER) stress in the mouse lungs. In BEAS-2B cells, FMN treatment reduced CSE-induced inflammation, ER stress, and apoptosis. Mechanistically, FMN downregulated the CS-activated AhR/CYP1A1 and AKT/mTOR signaling pathways in vivo and in vitro. FMN can attenuate CS-induced COPD in mice by suppressing inflammation, ER stress, and apoptosis in bronchial epithelial cells via the inhibition of AhR/CYP1A1 and AKT/mTOR signaling pathways, suggesting a new therapeutic potential for COPD treatment.


Subject(s)
Cigarette Smoking , Isoflavones , Pulmonary Disease, Chronic Obstructive , Animals , Mice , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Line , Cytochrome P-450 CYP1A1 , Endoplasmic Reticulum Stress , Epithelial Cells/metabolism , Inflammation/metabolism , Lung , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
11.
J Environ Manage ; 351: 119879, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157574

ABSTRACT

In recent years, food waste has been a global concern that contributes to climate change. To deal with the rising impacts of climate change, in Hong Kong, food waste is converted into electricity in the framework of low-carbon approach. This work provides an overview of the conversion of food waste into electricity to achieve carbon neutrality. The production of methane and electricity from waste-to-energy (WTE) conversion are determined. Potential income from its sale and environmental benefits are also assessed quantitatively and qualitatively. It was found that the electricity generation from the food waste could reach 4.33 × 109 kWh annually, avoiding equivalent electricity charge worth USD 3.46 × 109 annually (based on US' 8/kWh). An equivalent CO2 mitigation of 9.9 × 108 kg annually was attained. The revenue from its electricity sale in market was USD 1.44×109 in the 1st year and USD 4.24 ×109 in the 15th year, respectively, according to the projected CH4 and electricity generation. The modelling study indicated that the electricity production is 0.8 kWh/kg of landfilled waste. The food waste could produce electricity as low as US' 8 per kW ∙ h. In spite of its promising results, there are techno-economic bottlenecks in commercial scale production and its application at comparable costs to conventional fossil fuels. Issues such as high GHG emissions and high production costs have been determined to be resolved later. Overall, this work not only leads to GHG avoidance, but also diversifies energy supply in providing power for homes in the future.


Subject(s)
Refuse Disposal , Climate Change , Food Loss and Waste , Hong Kong , Food , Carbon , Electricity , China
12.
J Med Virol ; 95(3): e28637, 2023 03.
Article in English | MEDLINE | ID: mdl-36892175

ABSTRACT

Increasing evidence suggests that natural antisense transcriptional lncRNAs regulate their adjacent coding genes to mediate diverse aspects of biology. Bioinformatics analysis of the previously identified antiviral gene ZNFX1 revealed neighboring lncRNA ZFAS1 transcribed on the opposite strand from ZNFX1. Whether ZFAS1 exerts antiviral function via regulating the dsRNA sensor ZNFX1 is unknown. Here we found that ZFAS1 was upregulated by RNA and DNA viruses and type I IFNs (IFN-I) dependent on Jak-STAT signaling, similar to the transcription regulation of ZNFX1. Knockdown of endogenous ZFAS1 partially facilitated viral infection, while ZFAS1 overexpression showed opposite effects. In addition, mice were more resistant to VSV infection with the delivery of human ZFAS1. We further observed that ZFAS1 knockdown significantly inhibited IFNB1 expression and IFR3 dimerization, whereas ZFAS1 overexpression positively regulated antiviral innate immune pathways. Mechanistically, ZFAS1 positively regulated ZNFX1 expression and antiviral function by enhancing the protein stability of ZNFX1, thereby establishing a positive feedback loop to enhance antiviral immune activation status. In short, ZFAS1 is a positive regulator of antiviral innate immune response via regulating its neighbor gene ZNFX1, adding new mechanistic insight into lncRNA-mediated regulation of signaling in innate immunity.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation , Immunity, Innate , Antiviral Agents , MicroRNAs/genetics , Antigens, Neoplasm
13.
Diabetes Metab Res Rev ; 39(7): e3691, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37415428

ABSTRACT

BACKGROUND: Prediabetes is an intermediate metabolic state between euglycaemia and diabetes, including three different definitions: impaired fasting glucose, impaired glucose tolerance, and mildly elevated glycated haemoglobin (HbA1c) (range 5.7%-6.4%). The effect of prediabetes on bone mineral density (BMD) has not been established. Therefore, we performed a meta-analysis to evaluate the association between prediabetes and BMD. METHODS: We retrieved studies related to prediabetes and BMD from PubMed, Web of Science, and Embase databases from January 1990 to December 2022. All data were analysed using the random effects model. Statistical heterogeneity was tested by I2 . Subgroup analysis was performed after each study-level variable was pre-defined by meta-regression. RESULTS: A total of 17 studies were included involving 45,788 patients. We detected a significant overall association of prediabetes with increased spine BMD (weighted mean difference [WMD] = 0.01, 95% CI [0.00, 0.02], p = 0.005; I2  = 62%), femur neck (FN) BMD (WMD = 0.01, 95% CI [0.00, 0.01], p < 0.001; I2  = 19%), and femur total (FT) BMD (WMD = 0.02, 95% CI [0.01, 0.03], p < 0.001; I2  = 51%). Several variables leading to heterogeneity were defined by meta-regression, including age, sex, region, study type, dual-energy X-ray absorptiometry scanner manufacturer, and prediabetes definition. Subgroup analyses indicated that the association of prediabetes with increased BMD was stronger in men, Asians, and older adults over 60 years of age. CONCLUSIONS: Current evidence shows that prediabetes is strongly associated with increased BMD of the spine, FN, and FT. The association was stronger among males, Asians, and older adults over 60 years of age.

14.
Reprod Biol Endocrinol ; 21(1): 112, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001517

ABSTRACT

BACKGROUND: This study aimed to assess the predictive value of endometrial blood flow branches on pregnancy outcomes after hormone replacement therapy-frozen embryo transfer (HRT-FET). METHODS: This prospective observational study involved 292 reproductive-aged women who underwent endometrial receptivity assessment in a tertiary care academic medical center in southwest China using power Doppler ultrasonography during HRT-FET. Three-dimensional power Doppler ultrasound was performed on the day of endometrial transformation and the day before embryo transfer. The endometrial blood flow branches of the endometrial and subendometrial regions were compared in the non-pregnant and pregnant groups at the two time points mentioned above. RESULTS: The endometrial blood flow branches were higher in pregnant patients than in non-pregnant patients on the day of endometrial transformation (P = 0.009) and the day before embryo transfer (P = 0.001). Changes in endometrial blood flow pattern and endometrial blood flow branches at the two time points did not differ among the pregnancy outcome samples. After adjusting for age, antral follicles, and embryos transferred, the endometrial blood flow branches on the day before embryo transfer was the independent factor influencing the chance of clinical pregnancy, with an odds ratio of 3.001 (95% confidence interval: 1.448 - 6.219, P = 0.003). CONCLUSIONS: Endometrial blood flow perfusion during the peri-transplantation period of the HRT-FET cycle is a good indicator of pregnancy outcomes, suggesting that valuation of endometrial branches via power Doppler ultrasound is a simple and effective approach for achieving indicator measurements.


Subject(s)
Embryo Transfer , Ultrasonography, Doppler , Pregnancy , Humans , Female , Adult , Ultrasonography, Doppler/methods , Ultrasonography , Pregnancy Outcome , Hormone Replacement Therapy , Pregnancy Rate , Endometrium/diagnostic imaging , Endometrium/blood supply , Retrospective Studies , Cryopreservation
15.
BMC Cancer ; 23(1): 677, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464334

ABSTRACT

The accumulation of lipid droplets (LDs) in hepatocytes is the main pathogenesis in nonalcoholic fatty liver disease (NAFLD), which is also the key risk factor for the progression of hepatocellular carcinoma (HCC). LDs behaviors are demonstrated to be associated with HCC advancement, and are tightly regulated by a subset protein localized on the surface of LDs. However, the role of LDs-localized protein in HCC has been rarely investigated. This study is focused on the transcriptional dynamic and prognostic value of LDs-localized protein in HCC. Firstly, we summarized the known LDs-localized proteins, which are demonstrated by immunofluorescence according to previous studies. Next, by the use of GEPIA/UALCAN/The Human Protein Atlas databases, we screened the transcriptional change in tumor and normal liver tissues, and found that 13 LDs-localized proteins may involve in the progression of HCC. Then we verified the transcriptional changes of 13 LDs-localized proteins by the use of HCC samples. Moreover, based on the assays of fatty liver of mice and human NAFLD liver samples, we found that the hepatic steatosis mainly contributed to the transcriptional change of selected LDs-localized proteins, indicating the involvement of these LDs-localized proteins in the negative role of NAFLD in HCC progression. Finally, we focused on the role of PLIN3 in HCC, and revealed that NAFLD status significantly promoted PLIN3 transcription in HCC tissue. Functional studies revealed that PLIN3 knockdown significantly limited the migration and chemosensitivity of hepatoma cells, suggesting the positive role of PLIN3 in HCC progression. Our study not only revealed the transcriptional change and prognostic value of lipid droplet-localized proteins in HCC, but also built the correlation between HCC and hepatic steatosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Droplets/metabolism , Prognosis , Lipid Droplet Associated Proteins/metabolism , Liver Neoplasms/pathology , Proteins/metabolism
16.
Neurochem Res ; 48(5): 1424-1437, 2023 May.
Article in English | MEDLINE | ID: mdl-36482035

ABSTRACT

Astrocyte activation is key in neurodegenerative diseases. Hydrogen sulfide (H2S) exhibits neuroprotective effects on astrocytes, although the underlying molecular mechanism remains unclear. Here, we explored the effects of H2S on lipopolysaccharide (LPS)-induced astrocyte activation and astrocyte-mediated neuroinflammation. After inducing primary astrocytes via LPS exposure, H2S levels were altered. The generation and secretion of inflammatory mediators by astrocytes and their interrelation with P-glycoprotein (P-gp), an important transporter belonging to the ABC transporter family, were assessed. Activated astrocytes showed upregulated glial fibrillary acidic protein (GFAP) mRNA expression, and significantly increased proinflammatory factor mRNA/protein expression and release. The secretory capacity of astrocytes was reduced, with significantly decreased proinflammatory factor levels in culture supernatant after P-gp inhibitor verapamil pretreatment. The increase in the intracellular H2S level inhibited LPS-induced GFAP expression and P65 nuclear entry in astrocytes. mRNA expression and release of proinflammatory factors were reduced significantly, with no significant changes in cytoplasmic protein expression. S-sulfhydration levels increased significantly with the increased concentration of sodium hydrosulfide or S-adenosyl-L-methionine addition, with only moderate changes in astrocyte P-gp expression. H2S regulates NF-κB activation, leads to S-sulfhydration of P-gp, and inhibits the biosynthesis and secretion of proinflammatory factors by astrocytes. The regulatory effects of H2S on astrocytes may have clinical value for exploring new therapeutic strategies against neurodegenerative diseases.


Subject(s)
Hydrogen Sulfide , NF-kappa B , Humans , NF-kappa B/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Lipopolysaccharides/toxicity , Astrocytes/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , RNA, Messenger/metabolism
17.
Liver Int ; 43(6): 1307-1319, 2023 06.
Article in English | MEDLINE | ID: mdl-36892418

ABSTRACT

BACKGROUND AND AIMS: Liver diseases present a wide range of fibrosis, from fatty liver with no inflammation to steatohepatitis with varying degrees of fibrosis, to established cirrhosis leading to HCC. In a multivariate analysis, serum levels of spermidine were chosen as the top metabolite from 237 metabolites and its levels were drastically reduced along with progression to advanced steatohepatitis. Our previous studies that showed spermidine supplementation helps mice prevent liver fibrosis through MAP1S have prompted us to explore the possibility that spermidine can alleviate or cure already developed liver fibrosis. METHODS: We collected tissue samples from patients with liver fibrosis to measure the levels of MAP1S. We treated wild-type and MAP1S knockout mice with CCl4 -induced liver fibrosis with spermidine and isolated HSCs in culture to test the effects of spermidine on HSC activation and liver fibrosis. RESULTS: Patients with increasing degrees of liver fibrosis had reduced levels of MAP1S. Supplementing spermidine in mice that had already developed liver fibrosis after 1 month of CCl4 induction for an additional 3 months resulted in significant reductions in levels of ECM proteins and a remarkable improvement in liver fibrosis through MAP1S. Spermidine also suppressed HSC activation by reducing ECM proteins at both the mRNA and protein levels, and increasing the number of lipid droplets in stellate cells. CONCLUSIONS: Spermidine supplementation is a potentially clinically meaningful approach to treating and curing liver fibrosis, preventing cirrhosis and HCC in patients.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Liver Cirrhosis , Liver Neoplasms , Animals , Mice , Autophagy/physiology , Carcinoma, Hepatocellular/pathology , Fatty Liver/pathology , Fibrosis , Hepatic Stellate Cells/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Neoplasms/pathology , Microtubule-Associated Proteins/metabolism , Spermidine/pharmacology , Spermidine/therapeutic use , Spermidine/metabolism , Humans
18.
Inorg Chem ; 62(4): 1466-1475, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36656113

ABSTRACT

Two series of lanthanoid (Ln)-containing polyoxometalates (POMs) {[Ln6(ampH)4(H2O)24-n(ampH2)n(PW11O39)2]·21H2O (Ln = Tb, n = 0 (1), Ln = Er, n = 1 (2)) and K2[Ln6(ampH)4(H2O)22(SiW11O39)2]·23H2O (Ln = Tb (3), Er (4)) (ampH2 = (aminomethyl) phosphonic acid)} have been synthesized with tri-lacunary Keggin-type POMs containing different types of heteroatoms. Compounds 1 and 2 display neutral organic-inorganic hybrid POM molecules containing {Ln6(ampH)4} ({Ln6}) cores sandwiched by two {PW11O39} units. By changing the heteroatoms from PV to SiIV, the extended 2D networks of 3 and 4 were successfully isolated where the adjacent {Ln6} clusters were connected by {SiW11O39} moieties. Luminescence performances and magnetic properties of 1-4 have been systematically surveyed. The solid-state fluorescence spectra of 1-4 display characteristic emissions of Ln components resulting from the 4f-4f transitions, and energy transfer from the POM segments to Ln3+ centers in 1 and 3 has been observed based on the lifetime decay behaviors. Furthermore, all compounds can be utilized as electrocatalysts toward reduction of nitrite with high stability.

19.
Occup Environ Med ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38053269

ABSTRACT

BACKGROUND: More than 83% of the world's population lives under light-polluted skies while information about health effects of outdoor light at night (LAN) is limited. We examined the association of LAN with natural cause (NC) and cardiovascular disease (CVD) mortality using the UK Biobank. METHODS: We included 273 335 participants recruited between 2006 and 2010. Level of LAN was estimated at each participant's address using time-varying satellite data for a composite of persistent night-time illumination at ~1 km2 scale. Information on causes of death until 12 November 2021 was obtained through record linkage. Cox proportional hazards regression was used. RESULTS: In the follow-up with an average of 12.4 years, 14 864 NC and 3100 CVD deaths were identified. Compared with the participants exposed to the first quartile of LAN, participants exposed to the highest quartile showed an 8% higher risk of NC mortality (HR: 1.08, 95% CI 1.03 to 1.13) after adjusting for age, sex, social-economic status, shift work, lifestyle factors and body mass index. However, the association disappeared after further adjustment for PM2.5 and evening noise, with HRs (95% CIs) of 1.02 (0.97 to 1.07), 1.01 (0.97 to 1.06) and 1.03 (0.97 to 1.08), respectively, for the participants exposed to the second, third and fourth quartiles of LAN. No significant associations were observed between LAN and CVD mortality, either. CONCLUSIONS: We did not observe significant associations of LAN with NC and CVD mortality in this large nationwide cohort. The health effects of LAN remain unclear. Further studies are warranted to address this public health concern.

20.
Appl Microbiol Biotechnol ; 107(11): 3605-3620, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119203

ABSTRACT

The filamentous fungus Penicillium oxalicum secretes integrative plant polysaccharide-degrading enzymes (PPDEs) applicable to biotechnology. Glycogen synthase kinase-3ß (GSK-3ß) mediates various cellular processes in eukaryotic cells, but the regulatory mechanisms of PPDE biosynthesis in filamentous fungi remain poorly understood. In this study, POGSK-3ß (POX_c04478), a homolog of GSK-3ß in P. oxalicum, was characterised using biochemical, microbiological and omics approaches. Knockdown of POGSK-3ß in P. oxalicum using a copper-responsive promoter replacement system led to 53.5 - 63.6%, 79.0 - 92.8% and 76.8 - 94.7% decreases in the production of filter paper cellulase, soluble starch-degrading enzyme and raw starch-degrading enzyme, respectively, compared with the parental strain ΔKu70. POGSK-3ß promoted mycelial growth and conidiation. Transcriptomic profiling and real-time quantitative reverse transcription PCR analyses revealed that POGSK-3ß dynamically regulated the expression of genes encoding major PPDEs, as well as fungal development-associated genes. The results broadened our understanding of the regulatory functions of GKS-3ß and provided a promising target for genetic engineering to improve PPDE production in filamentous fungi. KEY POINTS: • The roles of glycogen synthase kinase-3ß were investigated in P. oxalicum. • POGSK-3ß regulated PPDE production, mycelial growth and conidiation. • POGSK-3ß controlled the expression of major PPDE genes and regulatory genes.


Subject(s)
Fungal Polysaccharides , Penicillium , Glycogen Synthase Kinase 3 beta/metabolism , Fungal Polysaccharides/metabolism , Penicillium/metabolism , Fungi , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL