Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cell ; 186(17): 3726-3743.e24, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37442136

ABSTRACT

Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.


Subject(s)
Cerebral Cortex , Macaca , Single-Cell Analysis , Transcriptome , Animals , Humans , Mice , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Macaca/metabolism , Transcriptome/genetics
2.
Learn Mem ; 30(12): 325-337, 2023 12.
Article in English | MEDLINE | ID: mdl-38114331

ABSTRACT

Memory retrieval is strikingly susceptible to external states (environment) and internal states (mood states and alcohol), yet we know little about the underlying mechanisms. We examined how internally generated states influence successful memory retrieval using the functional magnetic resonance imaging (fMRI) of laboratory mice during memory retrieval. Mice exhibited a strong tendency to perform memory retrieval correctly only in the reinstated mammillary body-inhibited state, in which mice were trained to discriminate auditory stimuli in go/no-go tasks. fMRI revealed that distinct auditory cues engaged differential brain regions, which were primed by internal state. Specifically, a cue associated with a reward activated the lateral amygdala, while a cue signaling no reward predominantly activated the postsubiculum. Modifying these internal states significantly altered the neural activity balance between these regions. Optogenetic inhibition of those regions in the precue period blocked the retrieval of type-specific memories. Our findings suggest that memory retrieval is under the control of two interrelated neural circuits underlying the neural basis of state-dependent memory retrieval.


Subject(s)
Brain , Memory , Mice , Animals , Memory/physiology , Brain/physiology , Cues , Brain Mapping , Magnetic Resonance Imaging
3.
NMR Biomed ; : e5033, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712335

ABSTRACT

Recent studies have shown significant changes to brain microstructure during sleep and anesthesia. In vivo optical microscopy and magnetic resonance imaging (MRI) studies have attributed these changes to anesthesia and sleep-related modulation of the brain's extracellular space (ECS). Isoflurane anesthesia is widely used in preclinical diffusion MRI (dMRI) and it is therefore important to investigate if the brain's microstructure is affected by anesthesia to an extent detectable with dMRI. Here, we employ diffusion kurtosis imaging (DKI) to assess brain microstructure in the awake and anesthetized mouse brain (n = 22). We find both mean diffusivity (MD) and mean kurtosis (MK) to be significantly decreased in the anesthetized mouse brain compared with the awake state (p < 0.001 for both). This effect is observed in both gray matter and white matter. To further investigate the time course of these changes we introduce a method for time-resolved fast DKI. With this, we show the time course of the microstructural alterations in mice (n = 5) as they transition between states in an awake-anesthesia-awake paradigm. We find that the decrease in MD and MK occurs rapidly after delivery of gas isoflurane anesthesia and that values normalize only slowly when the animals return to the awake state. Finally, time-resolved fast DKI is employed in an experimental mouse model of brain edema (n = 4), where cell swelling causes the ECS volume to decrease. Our results show that isoflurane affects DKI parameters and metrics of brain microstructure and point to isoflurane causing a reduction in the ECS volume. The demonstrated DKI methods are suitable for in-bore perturbation studies, for example, for investigating microstructural modulations related to sleep/wake-dependent functions of the glymphatic system. Importantly, our study shows an effect of isoflurane anesthesia on rodent brain microstructure that has broad relevance to preclinical dMRI.

4.
Neurobiol Dis ; 173: 105838, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35985556

ABSTRACT

Transgenic animal models with homologous etiology provide a promising way to pursue the neurobiological substrates of the behavioral deficits in autism spectrum disorder (ASD). Gain-of-function mutations of MECP2 cause MECP2 duplication syndrome, a severe neurological disorder with core symptoms of ASD. However, abnormal brain developments underlying the autistic-like behavioral deficits of MECP2 duplication syndrome are rarely investigated. To this end, a human MECP2 duplication (MECP2-DP) rat model was created by the bacterial artificial chromosome transgenic method. Functional and structural magnetic resonance imaging (MRI) with high-field were performed on 16 male MECP2-DP rats and 15 male wildtype rats at postnatal 28 days, 42 days, and 56 days old. Multimodal fusion analyses guided by locomotor-relevant metrics and social novelty time separately were applied to identify abnormal brain networks associated with diverse behavioral deficits induced by MECP2 duplication. Aberrant functional developments of a core network primarily composed of the dorsal medial prefrontal cortex (dmPFC) and retrosplenial cortex (RSP) were detected to associate with diverse behavioral phenotypes in MECP2-DP rats. Altered developments of gray matter volume were detected in the hippocampus and thalamus. We conclude that gain-of-function mutations of MECP2 induce aberrant functional activities in the default-mode-like network and aberrant volumetric changes in the brain, resulting in autistic-like behavioral deficits. Our results gain critical insights into the biomarker of MECP2 duplication syndrome and the neurobiological underpinnings of the behavioral deficits in ASD.


Subject(s)
Autism Spectrum Disorder , Mental Retardation, X-Linked , Animals , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Brain/metabolism , Brain Mapping/methods , Humans , Male , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Rats
5.
Magn Reson Med ; 87(6): 2851-2861, 2022 06.
Article in English | MEDLINE | ID: mdl-35107833

ABSTRACT

PURPOSE: CSF plays important roles in clearing brain waste and homeostasis. However, mapping whole-brain CSF flow in the rodents is difficult, primarily due to its assumed very low velocity. Therefore, we aimed to develop a novel phase-contrast MRI method to map whole-brain CSF flow in the mouse brain. METHODS: A novel generalized Hadamard encoding-based multi-band scheme (dubbed HEAP-METRIC, Hadamard Encoding APproach of Multi-band Excitation for short TR Imaging aCcelerating) using complex Hadamard matrix was developed and incorporated into conventional phase contrast (PC)-MRI to significantly increase SNR. RESULTS: Slow flow phantom imaging validated HEAP-METRIC PC-MRI's ability to achieve fast and accurate mapping of slow flow velocities (~102  µm/s). With the SNR gain afforded by HEAP-METRIC scheme, high-resolution (0.08 × 0.08 mm in-plane resolution and 36 0.4 mm slices) PC-MRI was completed in 21 min for whole-brain CSF flow mapping in the mouse. Using this novel method, we provide the first report of whole-brain CSF flow in the awake mouse brain with an average flow velocity of ~200 µm/s. Furthermore, HEAP-METRIC PC-MRI revealed CSF flow was reduced by isoflurane anesthesia, accompanied by reduction of glymphatic function as measured by dynamic contrast-enhanced MRI. CONCLUSION: We developed and validated a generalized HEAP-METRIC PC-MRI for mapping low velocity flow. With this method, we have achieved the first whole-brain mapping of awake mouse CSF flow and have further revealed that anesthesia reduces CSF flow velocity.


Subject(s)
Isoflurane , Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Brain Mapping , Cerebrospinal Fluid/diagnostic imaging , Magnetic Resonance Imaging/methods , Mice , Phantoms, Imaging
6.
Neuroimage ; 204: 116242, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31586674

ABSTRACT

Mouse fMRI has become increasingly popular in the small animal imaging field. However, compared to the more commonly used rat fMRI, it is challenging for mouse fMRI to obtain robust and specific functional imaging results. In the meantime, in other neuroscience modalities such as optical imaging, functional recording in the awake mice is common and becoming standard. Therefore, in the current study we developed comprehensive setups and analysis pipeline for multi-sensory fMRI paradigms in the awake mice. Customized setups of somatosensory (whisker), auditory and olfactory stimulation were developed for use in the cryogenic coil in the awake mouse fMRI setting. After carefully evaluating head motion and motion artefacts, the nuisance regression approach was optimized for reducing the confounding effect of motion. The high temporal resolution data (TR = 0.35 s) revealed fast temporal dynamics (time-to-peak ~2 s) of evoked BOLD responses in most brain regions. Using the derived awake mouse specific hemodynamic response functions, high spatial resolution data revealed robust, specific and consistent cortical and subcortical activations in response to somatosensory, auditory and olfactory stimulations, respectively. Overall, we present comprehensive methods for acquiring and analyzing sensory evoked awake mouse fMRI data. The establishment of multi-sensory paradigms in awake mouse fMRI provides valuable tools for examining spatiotemporal characteristics and neural mechanisms of BOLD signals in the future.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Functional Neuroimaging/methods , Hemodynamics/physiology , Magnetic Resonance Imaging/methods , Perception/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Physical Stimulation , Wakefulness/physiology
7.
Neuroimage ; 200: 405-413, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31280011

ABSTRACT

Task based and resting state fMRI has been widely utilized to study brain functions. As the foundation of fMRI, the underlying neural basis of the BOLD signal has been extensively studied, but the detailed mechanism remains elusive, particularly during the resting state. To examine the neurovascular coupling, it is important to simultaneously record neural and vascular signals. Here we developed a novel setup of camera based, scalable simultaneous calcium fiber photometry and fMRI in rats. Using this setup, we recorded calcium signals of superior colliculus (SC) and lateral geniculate nucleus (LGN) and fMRI simultaneously during visual stimulation and the resting state. Our results revealed robust, region-specific coupling between calcium and BOLD signals in the task state and weaker, whole brain correlation in the resting state. Interestingly, the spatial specificity of such correlation in the resting state was improved upon regression of white matter, ventricle signals and global signals in fMRI data. Overall, our results suggest differential coupling of calcium and BOLD signals for subcortical regions between evoked and resting states, and the coupling relationship in the resting state was related with resting state BOLD preprocessing strategies.


Subject(s)
Calcium , Cerebral Ventricles/physiology , Functional Neuroimaging/methods , Geniculate Bodies/physiology , Neurovascular Coupling/physiology , Photometry/methods , Superior Colliculi/physiology , Visual Perception/physiology , White Matter/physiology , Animals , Calcium/metabolism , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/metabolism , Geniculate Bodies/diagnostic imaging , Geniculate Bodies/metabolism , Magnetic Resonance Imaging , Male , Photic Stimulation , Photometry/instrumentation , Rats , Rats, Sprague-Dawley , Superior Colliculi/diagnostic imaging , Superior Colliculi/metabolism , White Matter/diagnostic imaging , White Matter/metabolism
8.
Neuroimage ; 188: 733-742, 2019 03.
Article in English | MEDLINE | ID: mdl-30611875

ABSTRACT

Functional magnetic imaging (fMRI) has been widely used to examine the functional neural networks in both the evoked and resting states. However, most fMRI studies in rodents are performed under anesthesia, which greatly limits the scope of their application, and behavioral relevance. Efforts have been made to image rodents in the awake condition, either in the resting state or in response to sensory or optogenetic stimulation. However, fMRI in awake behaving rodents has not yet been achieved. In the current study, a novel fMRI paradigm for awake and behaving mice was developed, allowing functional imaging of the mouse brain in an olfaction-based go/no-go task. High resolution functional imaging with limited motion and image distortion were achieved at 9.4T with a cryogenic coil in awake and behaving mice. Distributed whole-brain spatiotemporal patterns were revealed, with drastically different activity profiles for go versus no-go trials. Therefore, we have demonstrated the feasibility of functional imaging of an olfactory behavior in awake mice. This fMRI paradigm in awake behaving mice could lead to novel insights into neural mechanisms underlying behaviors at a whole-brain level.


Subject(s)
Brain/physiology , Functional Neuroimaging/methods , Inhibition, Psychological , Olfactory Perception/physiology , Psychomotor Performance/physiology , Animals , Behavior, Animal/physiology , Brain/diagnostic imaging , Feasibility Studies , Male , Mice , Mice, Inbred C57BL
9.
Cell Biol Int ; 43(6): 669-677, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30958599

ABSTRACT

The caveolin-3 (CAV3) protein is known to be specifically expressed in various myocytes, and skeletal muscle consumes most of the blood glucose as an energy source to maintain normal cell metabolism and function. The P104L mutation in the coding sequence of the human CAV3 gene leads to autosomal dominant disease limb-girdle muscular dystrophy type 1C (LGMD-1C). We previously reported that C2C12 cells transiently transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis after insulin stimulation. The present study aimed to examine whether the P104L mutation affects C2C12 cell glucose metabolism, growth, and proliferation without insulin stimulation. C2C12 cells stably transfected with CAV3-P104L were established, and biochemical assays, western blot analysis and confocal microscopy were used to observe glucose metabolism as well as cell growth and proliferation and to determine the effect of the P104L mutation on the PI3K/Akt signaling pathway. Without insulin stimulation, C2C12 cells stably transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis, decreased CAV3 expression and reduced localization of CAV3 and GLUT4 on the cell membrane. The P104L mutant significantly reduced the cell diameters, but accelerated cell proliferation. Akt phosphorylation was inhibited, and protein expression of GLUT4, p-GSK3ß, and p-p70s6K, which are molecules downstream of Akt, was significantly decreased. The CAV3-P104L mutation inhibits glycometabolism and cell growth but accelerates C2C12 cell proliferation by reducing CAV3 protein expression and cell membrane localization, which may contribute to the pathogenesis of LGMD-1C.


Subject(s)
Caveolin 3/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Caveolin 3/metabolism , Cell Line , Cell Membrane/metabolism , Cell Proliferation/genetics , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Insulin/metabolism , Muscle Cells/metabolism , Muscle Cells/pathology , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics
10.
Neuroimage ; 170: 95-112, 2018 04 15.
Article in English | MEDLINE | ID: mdl-27393420

ABSTRACT

Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains.


Subject(s)
Atlases as Topic , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Rats/physiology , Animals , Male , Rats, Long-Evans
11.
Neuroimage ; 153: 382-398, 2017 06.
Article in English | MEDLINE | ID: mdl-27908788

ABSTRACT

Functional magnetic resonance imaging (fMRI) has allowed the noninvasive study of task-based and resting-state brain dynamics in humans by inferring neural activity from blood-oxygenation-level dependent (BOLD) signal changes. An accurate interpretation of the hemodynamic changes that underlie fMRI signals depends on the understanding of the quantitative relationship between changes in neural activity and changes in cerebral blood flow, oxygenation and volume. While there has been extensive study of neurovascular coupling in anesthetized animal models, anesthesia causes large disruptions of brain metabolism, neural responsiveness and cardiovascular function. Here, we review work showing that neurovascular coupling and brain circuit function in the awake animal are profoundly different from those in the anesthetized state. We argue that the time is right to study neurovascular coupling and brain circuit function in the awake animal to bridge the physiological mechanisms that underlie animal and human neuroimaging signals, and to interpret them in light of underlying neural mechanisms. Lastly, we discuss recent experimental innovations that have enabled the study of neurovascular coupling and brain-wide circuit function in un-anesthetized and behaving animal models.


Subject(s)
Brain/physiology , Neurovascular Coupling , Anesthetics/administration & dosage , Animals , Brain/blood supply , Brain/drug effects , Brain Mapping , Hemodynamics/drug effects , Humans , Magnetic Resonance Imaging , Neurovascular Coupling/drug effects
12.
Neuroimage ; 104: 89-99, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25315787

ABSTRACT

Since its introduction, resting-state functional magnetic resonance imaging (rsfMRI) has been a powerful tool for investigating functional neural networks in both normal and pathological conditions. When measuring resting-state functional connectivity (RSFC), most rsfMRI approaches do not consider its temporal variations and thus only provide the averaged RSFC over the scan time. Recently, there has been a surge of interest to investigate the dynamic characteristics of RSFC in humans, and promising results have been yielded. However, our knowledge regarding the dynamic RSFC in animals remains sparse. In the present study we utilized the single-volume co-activation method to systematically study the dynamic properties of RSFC within the networks of infralimbic cortex (IL) and primary somatosensory cortex (S1) in both awake and anesthetized rats. Our data showed that both IL and S1 networks could be decomposed into several spatially reproducible but temporally changing co-activation patterns (CAPs), suggesting that dynamic RSFC was indeed a characteristic feature in rodents. In addition, we demonstrated that anesthesia profoundly impacted the dynamic RSFC of neural circuits subserving cognitive and emotional functions but had less effects on sensorimotor systems. Finally, we examined the temporal characteristics of each CAP, and found that individual CAPs exhibited consistent temporal evolution patterns. Together, these results suggest that dynamic RSFC might be a general phenomenon in vertebrate animals. In addition, this study has paved the way for further understanding the alterations of dynamic RSFC in animal models of brain disorders.


Subject(s)
Anesthesia , Neural Pathways/physiology , Rest/physiology , Wakefulness/physiology , Animals , Cognition/physiology , Emotions/physiology , Limbic System/physiology , Magnetic Resonance Imaging , Male , Prefrontal Cortex/physiology , Rats , Rats, Long-Evans , Somatosensory Cortex/physiology
13.
Neuroimage ; 117: 114-23, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26002727

ABSTRACT

The medial prefrontal cortex (mPFC) plays a critical role in multiple cognitive and limbic functions. Given its vital importance, investigating the function of individual mPFC circuits in animal models has provided critical insight into the neural basis underlying different behaviors and psychiatric conditions. However, our knowledge regarding the mPFC whole-brain network stays largely at the anatomical level, while the functional network of mPFC, which can be dynamic in different conditions or following manipulations, remains elusive especially in awake rodents. Here we combined optogenetic stimulation and functional magnetic resonance imaging (opto-fMRI) to reveal the network of brain regions functionally activated by mPFC outputs in awake rodents. Our data showed significant increases in blood-oxygenation-level dependent (BOLD) signals in prefrontal, striatal and limbic regions when mPFC was optically stimulated. This activation pattern was robust, reproducible, and did not depend on the stimulation period in awake rats. BOLD signals, however, were substantially reduced when animals were anesthetized. In addition, regional brain activation showing increased BOLD signals during mPFC stimulation was corroborated by electrophysiological recordings. These results expand the applicability of the opto-fMRI approach from sensorimotor processing to cognition-related networks in awake rodents. Importantly, it may help elucidate the circuit mechanisms underlying numerous mPFC-related functions and behaviors that need to be assessed in the awake state.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Neurons/physiology , Optogenetics , Prefrontal Cortex/physiology , Animals , Corpus Striatum/physiology , Limbic System/physiology , Male , Nerve Net/physiology , Rats , Rats, Long-Evans , Reproducibility of Results
14.
Hum Brain Mapp ; 36(10): 3959-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26147340

ABSTRACT

Alterations in resting-state networks (RSNs) are often associated with psychiatric and neurologic disorders. Given this critical linkage, it has been hypothesized that RSNs can potentially be used as endophenotypes for brain diseases. To validate this notion, a critical step is to show that RSNs exhibit heritability. However, the investigation of the genetic basis of RSNs has only been attempted in the default-mode network at the region-of-interest level, while the genetic control on other RSNs has not been determined yet. Here, we examined the genetic and environmental influences on eight well-characterized RSNs using a twin design. Resting-state functional magnetic resonance imaging data in 56 pairs of twins were collected. The genetic and environmental effects on each RSN were estimated by fitting the functional connectivity covariance of each voxel in the RSN to the classic ACE twin model. The data showed that although environmental effects accounted for the majority of variance in wide-spread areas, there were specific brain sites that showed significant genetic control for individual RSNs. These results suggest that part of the human brain functional connectome is shaped by genomic constraints. Importantly, this information can be useful for bridging genetic analysis and network-level assessment of brain disorders.


Subject(s)
Cognition/physiology , Genetics , Nerve Net/physiology , Rest/physiology , Sensation/genetics , Sensation/physiology , Adolescent , Aging/genetics , Aging/psychology , Algorithms , Brain/physiology , Child , Connectome , Environment , Female , Humans , Image Processing, Computer-Assisted , Intelligence/genetics , Intelligence/physiology , Magnetic Resonance Imaging , Male , Sex Characteristics , Young Adult
15.
Neuroimage ; 103: 485-491, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25193500

ABSTRACT

Substantial evidence has suggested that the brain structures of the medial prefrontal cortex (mPFC) and amygdala (AMYG) are implicated in the pathophysiology of stress-related disorders. However, little is known with respect to the system-level adaptation of their neural circuitries to the perturbations of traumatic stressors. By utilizing behavioral tests and an awake animal imaging approach, in the present study we non-invasively investigated the impact of single-episode predator odor exposure in an inescapable environment on behaviors and neural circuits in rodents. We found that predator odor exposure significantly increased the freezing behavior. In addition, animals exhibited heightened anxiety levels seven days after the exposure. Intriguingly, we also found that the intrinsic functional connectivity within the AMYG-mPFC circuit was considerably compromised seven days after the traumatic event. Our data provide neuroimaging evidence suggesting that prolonged neuroadaptation induced by a single episode of traumatic stress can be non-invasively detected in rodents. These results also support the face validity and construction validity of using the paradigm of single trauma exposure in an inescapable environment as an animal model for post-traumatic stress disorder. Taken together, the present study has opened a new avenue to investigating animal models of stress-related mental disorders by going beyond static neuroanatomy, and ultimately bridging the gap between basic biomedical and human imaging research.


Subject(s)
Amygdala/physiopathology , Neural Pathways/physiopathology , Neuronal Plasticity/physiology , Prefrontal Cortex/physiopathology , Stress, Psychological/physiopathology , Animals , Consciousness , Disease Models, Animal , Magnetic Resonance Imaging , Male , Rats , Rats, Long-Evans , Rest , Stress Disorders, Post-Traumatic/physiopathology
16.
Brain Connect ; 14(1): 48-59, 2024 02.
Article in English | MEDLINE | ID: mdl-38063007

ABSTRACT

Introduction: In resting-state functional magnetic resonance imaging (rs-fMRI) studies, global signal regression (GSR) is a controversial preprocessing strategy. It effectively eliminates global noise driven by motion and respiration but also can introduce artifacts and remove functionally relevant metabolic information. Most preclinical rs-fMRI studies are performed in anesthetized animals, and anesthesia will alter both metabolic and neuronal activity. Methods: In this study, we explored the effect of GSR on rs-fMRI data collected under anesthetized and awake state in mice (n = 12). We measured global signal amplitude, and also functional connectivity (FC), functional connectivity density (FCD) maps, and brain modularity, all commonly used data-driven analysis methods to quantify connectivity patterns. Results: We found that global signal amplitude was similar between the awake and anesthetized states. However, GSR had a different impact on connectivity networks and brain modularity changes between states. We demonstrated that GSR had a more prominent impact on the anesthetized state, with a greater decrease in functional connectivity and increased brain modularity. We classified mice using the change in amplitude of brain modularity coefficient (ΔQ) before and after GSR processing. The results revealed that, when compared with the largest ΔQ group, the smallest ΔQ group had increased FCD in the cortex region in both the awake and anesthetized states. This suggests differences in individual mice may affect how GSR differentially affects awake versus anesthetized functional connectivity. Discussion: This study suggests that, for rs-fMRI studies which compare different physiological states, researchers should use GSR processing with caution.


Subject(s)
Brain Mapping , Brain , Mice , Animals , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Wakefulness , Magnetic Resonance Imaging/methods
17.
Neuron ; 112(8): 1342-1357.e6, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38359827

ABSTRACT

The basal forebrain (BF) is a complex structure that plays key roles in regulating various brain functions. However, it remains unclear how cholinergic and non-cholinergic BF neurons modulate large-scale functional networks and their relevance in intrinsic and extrinsic behaviors. With an optimized awake mouse optogenetic fMRI approach, we revealed that optogenetic stimulation of four BF neuron types evoked distinct cell-type-specific whole-brain BOLD activations, which could be attributed to BF-originated low-dimensional structural networks. Additionally, optogenetic activation of VGLUT2, ChAT, and PV neurons in the BF modulated the preference for locomotion, exploration, and grooming, respectively. Furthermore, we uncovered the functional network basis of the above BF-modulated behavioral preference through a decoding model linking the BF-modulated BOLD activation, low-dimensional structural networks, and behavioral preference. To summarize, we decoded the functional network basis of differential behavioral preferences with cell-type-specific optogenetic fMRI on the BF and provided an avenue for investigating mouse behaviors from a whole-brain view.


Subject(s)
Basal Forebrain , Animals , Mice , Basal Forebrain/physiology , Optogenetics , Magnetic Resonance Imaging , Neurons/physiology , Cholinergic Agents , Cholinergic Neurons/physiology
18.
J Neurosci ; 32(30): 10183-91, 2012 Jul 25.
Article in English | MEDLINE | ID: mdl-22836253

ABSTRACT

The neural mechanism of unconsciousness has been a major unsolved question in neuroscience despite its vital role in brain states like coma and anesthesia. The existing literature suggests that neural connections, information integration, and conscious states are closely related. Indeed, alterations in several important neural circuitries and networks during unconscious conditions have been reported. However, how the whole-brain network is topologically reorganized to support different patterns of information transfer during unconscious states remains unknown. Here we directly compared whole-brain neural networks in awake and anesthetized states in rodents. Consistent with our previous report, the awake rat brain was organized in a nontrivial manner and conserved fundamental topological properties in a way similar to the human brain. Strikingly, these topological features were well maintained in the anesthetized brain. Local neural networks in the anesthetized brain were reorganized with altered local network properties. The connectional strength between brain regions was also considerably different between the awake and anesthetized conditions. Interestingly, we found that long-distance connections were not preferentially reduced in the anesthetized condition, arguing against the hypothesis that loss of long-distance connections is characteristic to unconsciousness. These findings collectively show that the integrity of the whole-brain network can be conserved between widely dissimilar physiologic states while local neural networks can flexibly adapt to new conditions. They also illustrate that the governing principles of intrinsic brain organization might represent fundamental characteristics of the healthy brain. With the unique spatial and temporal scales of resting-state fMRI, this study has opened a new avenue for understanding the neural mechanism of (un)consciousness.


Subject(s)
Anesthesia , Brain/drug effects , Consciousness/drug effects , Nerve Net/drug effects , Anesthetics, Inhalation/pharmacology , Animals , Brain/physiology , Brain Mapping , Consciousness/physiology , Image Processing, Computer-Assisted , Isoflurane/pharmacology , Magnetic Resonance Imaging , Male , Nerve Net/physiology , Neuroimaging , Rats , Rats, Long-Evans
19.
Neuroimage ; 83: 237-44, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23777756

ABSTRACT

Thalamocortical connectivity plays a vital role in brain function. The anatomy and function of thalamocortical networks have been extensively studied in animals by numerous invasive techniques. Non-invasively mapping thalamocortical networks in humans has also been demonstrated by utilizing resting-state functional magnetic resonance imaging (rsfMRI). However, success in simultaneously imaging multiple thalamocortical networks in animals is rather limited. This is largely due to the profound impact of anesthesia used in most animal experiments on functional connectivity measurement. Here we have employed an awake animal imaging approach to systematically map thalamocortical connectivity for multiple thalamic nuclei in rats. Seed-based correlational analysis demonstrated robust functional connectivity for each thalamic nucleus in the cortex, and the cortical connectivity profiles revealed were in excellent accordance with the known thalamocortical anatomical connections. In addition, partial correlation analysis was utilized to further improve the spatial specificity of thalamocortical connectivity. Taken together, these findings have provided important evidence supporting the validity of rsfMRI measurement in awake animals. More importantly, the present study has made it possible to non-invasively investigate the function, neuroplasticity and mutual interactions of thalamocortical networks in animal models.


Subject(s)
Algorithms , Cerebral Cortex/physiology , Connectome/methods , Image Interpretation, Computer-Assisted/methods , Nerve Net/physiopathology , Neural Pathways/physiology , Thalamic Nuclei/physiology , Animals , Magnetic Resonance Imaging/methods , Male , Rats , Rats, Long-Evans , Reproducibility of Results , Rest/physiology , Sensitivity and Specificity
20.
Elife ; 122023 06 01.
Article in English | MEDLINE | ID: mdl-37261976

ABSTRACT

The available treatments for depression have substantial limitations, including low response rates and substantial lag time before a response is achieved. We applied deep brain stimulation (DBS) to the lateral habenula (LHb) of two rat models of depression (Wistar Kyoto rats and lipopolysaccharide-treated rats) and observed an immediate (within seconds to minutes) alleviation of depressive-like symptoms with a high-response rate. Simultaneous functional MRI (fMRI) conducted on the same sets of depressive rats used in behavioral tests revealed DBS-induced activation of multiple regions in afferent and efferent circuitry of the LHb. The activation levels of brain regions connected to the medial LHb (M-LHb) were correlated with the extent of behavioral improvements. Rats with more medial stimulation sites in the LHb exhibited greater antidepressant effects than those with more lateral stimulation sites. These results indicated that the antidromic activation of the limbic system and orthodromic activation of the monoaminergic systems connected to the M-LHb played a critical role in the rapid antidepressant effects of LHb-DBS. This study indicates that M-LHb-DBS might act as a valuable, rapid-acting antidepressant therapeutic strategy for treatment-resistant depression and demonstrates the potential of using fMRI activation of specific brain regions as biomarkers to predict and evaluate antidepressant efficacy.


Subject(s)
Deep Brain Stimulation , Habenula , Rats , Animals , Deep Brain Stimulation/methods , Habenula/physiology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/therapy
SELECTION OF CITATIONS
SEARCH DETAIL