ABSTRACT
Polarization and focal length are both critical optical parameters with many applications in many fields, such as optical communications and imaging. The development of metasurfaces provides a new realization of optical systems. In this paper, based on metasurfaces' powerful electromagnetic modulation capability, we integrate polarization conversion with continuous zoom function and propose a dynamic polarization-regulated metasurface with variable focal length. It realizes the reversible conversion of polarization state, which can convert linearly polarized light into elliptically polarized light and circularly polarized light and convert circularly polarized light to linearly polarized light. At the same time, it achieves a 4.4× zoom range, with a constant focal length variation from 70â µm to 309â µm. The metasurface has the advantages of small size, easy integration, and reconfigurability, providing a new design idea for complex functional optical systems.
ABSTRACT
The detection technology of infrared polarization has gained significant attention due to its ability to provide better identification and obtain more information about the target. In this paper, based on the expression of the full polarization state in Stokes space, we designed micro-nano metasurface functional arrays to calculate the polarization state of the incident light by reading the Stokes parameters (a set of parameters that describe the polarization state). Metalens with linear and circular polarization-dependent functions are designed based on the propagation and geometric phases of the dielectric Si meta-atoms in the infrared band, respectively. The device exhibits a high polarization extinction ratio. The influence of incident angle on polarization-dependent metalens is discussed, and the analysis of incident angle is of great significance for the practical application. An infrared six-foci metalens is proposed, each corresponding to the Poincaré sphere's coordinate component (a graphical polarization state method). By matching the six polarization components of the incident light and the Stokes parameters, the polarization detection function can be realized by calculating the polarization state of the incident light. There is a slight error between the theoretical value and the calculated value of the unit coordinate component of the Stokes parameters. At the same time, the intensity distribution of different incident light polarization azimuth angles and ellipticity angles on the focal plane agrees with the theory. The advantage of the device is that the polarization state of the incident light can be directly calculated without passing through other components. The six-foci metalens have potential applications in polarization detection and imaging, space remote sensing, etc.
ABSTRACT
Circularly polarized light (CPL) finds diverse applications in fields such as quantum communications, quantum computing, circular dichroism (CD) spectroscopy, polarization imaging, and sensing. However, conventional techniques for detecting CPL face challenges related to equipment miniaturization, system integration, and high-speed operation. In this study, we propose a novel design that addresses these limitations by employing a quarter waveplate constructed from a diamond metasurface, in combination with a linear polarizer crafted from metallic aluminum. The diamond array, with specific dimensions (a = 84â nm, b = 52â nm), effectively transforms left-handed and right-handed circularly polarized light into two orthogonally linearly polarized beams who have a polarization degree of approximately 0.9. The aluminum linear polarizer then selectively permits the transmission of these transformed linearly polarized beams.Our proposed design showcases remarkable circular dichroism performance at a wavelength of 280â nm, concurrently maintaining high transmittance and achieving a substantial extinction ratio of 25. Notably, the design attains an ultraviolet wavelength transmission efficiency surpassing 80%. Moreover, our design incorporates a rotation mechanism that enables the differentiation of linearly polarized light and singly circularly polarized light. In essence, this innovative design introduces a fresh paradigm for ultraviolet circularly polarized light detection, offering invaluable insights and references for applications in polarization detection, imaging, biomedical diagnostics, and circular dichroic spectroscopy.
ABSTRACT
The absorption spectrum of metasurface absorbers can be manipulated by changing structures. However, narrowband performance absorbers with high quality factors (Q-factor) are hard to achieve, mainly for the ohmic loss of metal resonators. Here, we propose an all-dielectric metasurface absorber with narrow absorption linewidth in the mid-infrared range. Magnetic quadrupole resonance is excited in the stacked Ge-Si3N4 nanoarrays with an absorption of 89.6% and a Q-factor of 6120 at 6.612â µm. The separate lossless Ge resonator and lossy Si3N4 layer realize high electromagnetic field gain and absorption, respectively. And the proposed method successfully reduced the intrinsic loss of the absorber, which reduced the absorption beyond the resonant wavelength and improved the absorption efficiency of Si3N4 in the low loss range. Furthermore, the absorption intensity and wavelength can be modulated by adjusting the geometric parameters of the structure. We believe this research has good application prospects in mid-infrared lasers, thermal emitters, gas feature sensing, and spectral detection.
ABSTRACT
Metasurface is a kind of sub-wavelength artificial electromagnetic structure, which can resonate with the electric field and magnetic field of the incident light, promote the interaction between light and matter, and has great application value and potential in the fields of sensing, imaging, and photoelectric detection. Most of the metasurface-enhanced ultraviolet detectors reported so far are metal metasurfaces, which have serious ohmic losses, and studies on the use of all-dielectric metasurface-enhanced ultraviolet detectors are rare. The multilayer structure of the diamond metasurface-gallium oxide active layer-silica insulating layer-aluminum reflective layer was theoretically designed and numerically simulated. In the case of gallium oxide thickness of 20â nm, the absorption rate of more than 95% at the working wavelength of 200-220â nm is realized, and the working wavelength can be adjusted by changing the structural parameters. The proposed structure has the characteristics of polarization insensitivity and incidence angle insensitivity. This work has great potential in the fields of ultraviolet detection, imaging, and communications.
ABSTRACT
We provide a method to regulate intramolecular charge transfer (ICT) through distorting fragment dipole moments based on molecular planarity and intuitively investigate the physical mechanisms of one-photon absorption (OPA), two-photon absorption (TPA), and electron circular dichroism (ECD) properties of the multichain 1,3,5 triazine derivatives o-Br-TRZ, m-Br-TRZ, and p-Br-TRZ containing three bromobiphenyl units. As the position of the C-Br bond on the branch chain becomes farther away, the molecular planarity is weakened, with the position of charge transfer (CT) on the branch chain of bromobiphenyl changing. The excitation energy of the excited states decreases, which leads to the redshift of the OPA spectrum of 1,3,5-triazine derivatives. The decrease in molecular plane results in a change in the magnitude and direction of the molecular dipole moment on the bromobiphenyl branch chain, which weakens the intramolecular electrostatic interaction of bromobiphenyl branch chain 1,3,5-triazine derivatives and weakens the charge transfer excitation of the second step transition in TPA, leading to an increase in the enhanced absorption cross-section. Furthermore, molecular planarity can also induce and regulate chiral optical activity through changing the direction of the transition magnetic dipole moment. Our visualization method helps to reveal the physical mechanism of TPA cross-sections generated via third-order nonlinear optical materials in photoinduced CT, which is of great significance for the design of large TPA molecules.
ABSTRACT
Broadband perfect infrared wave absorption of unpolarized light over a wide range of angles in an ultrathin film is critical for applications such as thermal emitters and imaging. Although many efforts have been made in infrared broadband absorption, it is still challenging to cover the perfect absorption of broadband in the long-wave infrared band. We propose a long-wave infrared broadband, polarization, and incident angle insensitivity metamaterial absorber based on the supercell with four rings of two sizes. Broadband absorption covering the long-wave infrared band is realized by combining four PSPRs and LSPRs absorption peaks excited by the supercell structure. The absorptivity of our absorber exceeds 90% in the wavelength range of 7.76â¼14µm, and the average absorptivity reaches 93.8%. The absorber maintains more than 80% absorptivity as the incident angle of unpolarized light reaches 60°, which may have promising applications for thermal emitters, infrared imaging, thermal detection.
ABSTRACT
A polarization sorting metamaterial with polarization filtering and absorption is proposed. When unpolarized incident light strikes the metamaterial, one polarization component is completely absorbed, and the other polarization component is completely transmitted. We achieved an absorption extinction ratio of up to 350 and a transmission extinction ratio of 425 simultaneously in the LWIR. Unlike the 50% energy utilization limit of other polarization absorbers due to the complete reflection of another polarization component, our proposed metamaterial can be composed of layered polarization selective absorption devices to achieve more than 90% energy utilization. Therefore our design can provide a new solution for real-time polarization detection.
ABSTRACT
Metalens have been recently introduced to overcome shortcomings of traditional lenses and optical systems, such as large volume and complicated assembly. As a proof-of-principle demonstration, we design an all-dielectric converging cylindrical metalens (CML) for working in long-wave infrared regions around 9 µm, which is made up of silicon-pillar on MgF2 dielectric layer. We further demonstrate the focusing effect of an orthogonal doublet cylindrical metalens (ODCM). Two CMLs are combined orthogonally and a circular focusing spot was demonstrated. This proves that within a certain size range, the focusing effect achieved by the ODCM is similar to that of a traditional circular metalens.
ABSTRACT
Broadband absorption is critical for the applications of metamaterial absorbers. In this work, a broadband long-wave infrared (LWIR) absorber with classical metal-dielectric-metal configuration is numerically demonstrated. The absorber consists of single-sized cut-wire arrays that show broadband and high extinction ratio, attributed to polarization-selective simultaneous excitation of propagated and localized surface plasmon resonances. The average absorption rate of the TM wave reaches 91.7% and 90% of the incident light is absorbed by the resonator in the wavelength range of 7.5-13.25µm so that the average extinction ratio in the resonator layer reaches 125. The polarization insensitive broadband absorption can be obtained by a cross resonator which can be treated as a pair of cut-wires perpendicular to each other. Our metamaterial absorber with single-sized resonators shows spatially concentrated broadband absorption and may have promising applications for hot-electron devices, infrared imaging, and thermal detection.
ABSTRACT
Capturing polarization information has long been an important topic in the field of detection. In this study, two polarization-dependent broadband absorbers based on a composite metamaterial structure were designed and numerically investigated. Unlike in conventional metamaterial absorbers, the bottom metallic film is functionalized to achieve a polarization response or broadband absorption. The simulation results show that the type I absorber exhibits TM polarization-dependent broadband absorption (absorptivity>80%) from 8.37 µm to 12.12 µm. In contrast, the type II absorber presents TE polarization-dependent broadband absorption (absorptivity>80%) from 8.23 µm to 11.93 µm. These devices are extremely sensitive to the change of polarization angle. The absorptivity changes monotonically with an increase of the polarization angle, but it is insensitive to oblique incidence. This design paves the way for realizing broadband polarization-dependent absorption via a simple configuration. It has bright prospects in thermal detection applications and imaging fields.
ABSTRACT
The atmospheric window in the infrared (IR) band primarily consists of mid-wave (MWIR, 3-5 µm) and long-wave IR (LWIR, 8-12 µm) bands, also known as the working bands in most of the IR devices. The main factor affecting the device capability includes the absorption efficiency, hence, the absorption material. Herein, a dual-band absorber based on the composite cross structure (CCS) in both MWIR and LWIR bands was proposed, with absorption peaks of 4.28 µm and 8.23 µm. The obtained absorber is with high scalability in the MWIR and LWIR region respectively by tuning the structural parameters. A quadrupole polarization model is proposed for further understanding of the uneven distribution of electromagnetic field that was caused by the change of the center spacing of the embedded structure. Meanwhile, it was shown that the two absorption peaks exhibited good incident angle stability. In addition, as the incident angle of the TM mode increases, a waveguide is formed between the embedded structure and the surface structure, leading to another strong absorption in the LWIR band. The results showed that absorption increases as the incident angle increases. The proposed absorber can be a good candidate for applications in thermal emission, detection and solar energy harvesting.
ABSTRACT
All-dielectric metamaterials are a promising low-loss alternative to plasmonic metamaterials for near-infrared perfect reflection, but the working bandwidth is still limited. Here we propose an ultra-wideband all-dielectric metamaterial perfect reflector that has a compact structure consisting of the subwavelength high-index grating, connection layer, and multilayer stack. Such a perfect reflector combines the advantages of quarter-wave design and resonant leaky mode, and covers an extremely wide wavelength range from 966 to 2203 nm under the normal incidence of transverse magnetic wave. By engineering the connection layer, the reflection band can be split with an ultra-narrowband tunneling of light transmission. These achievements demonstrate the promising potential of all-dielectric metamaterials as ultra-wideband reflectors for extensive applications in optical devices and systems.
ABSTRACT
Two types of ultra-broadband long wavelength infrared (LWIR) absorbers with small period and super thin thickness are designed. The absorption with high absorptivity and large bandwidth is achieved through combined propagating and localized surfaced plasmon resonances. We first design a three-layer absorber with a Ti-Ge-Ti configuration, the period of the structure is only 1.4 µm (nearly 1/8 of the center wavelength), the thickness of its dielectric is only 0.5 µm (1/22 of the center wavelength), and the average absorption is 87.9% under normal incident from 8µm to 14µm. Furthermore, the four-layer absorber with a Ti-Ge-Si3N4-Ti configuration is designed to obtain more average absorption increasing to 94.5% from 8 µm to 14µm under normal incident, the period of the structure increases to 1.6 µm and the total thickness of dielectric increases to 0.6µm. The proposed absorber is polarization-independent and possesses a good tolerance of incident angle. We calculate that the average absorption of the four-layer absorber for both TE- and TM-modes still exceeds 90% up to an incident angle of θ = 40° (90.7% for TE-mode, 91.9% for TM-mode), and exceed 80% up to an incident angle of θ = 60° (80.2% for TE-mode, 82.1% for TM-mode).
ABSTRACT
A dual-band metamaterial absorber based on local surface plasmon resonance is designed, which is composed of a periodic arrangement of stacked nanodisk structures. The structure unit consists of two dielectric layers and three metal layers. Based on the finite difference time domain method, under the condition of vertically incident plane light, two absorption peaks in the mid-wave infrared and long-wave infrared (MWIR/LWIR) are obtained, and the absorption is greater than 98%. The absorber has good incident state tolerance characteristics. We can modulate the MWIR/LWIR absorption peaks by changing the radius of the stacked disk structure, and MWIR and LWIR dual-band broadband absorption can be achieved by integrating different size elements in the plane. The average absorption is 71% for MWIR with 1.1 µm bandwidth from 3.2 to 4.3 µm and 88% for LWIR with 3 µm bandwidth from 8.5 to 11.5 µm. At the same time, the structure also has effective refractive index (RI) sensitivity characteristics. In the RI range of 1.8-2, the maximum RI sensitivity of the LWIR and the MWIR is 1085 nm/refractive index unit (RIU) and 1472 nm/RIU, respectively.
ABSTRACT
To realize the static state and high throughput of Fourier transform imaging spectrometer (FTIS), a temporal spatial mixed modulated FTIS based on multi-micro-mirror was put forward in this paper, whose interference system was based on Michelson interferometer with a multi-micro-mirror to replace the plane mirror. The remarkable characteristics of this FTIS were no movable parts and slit existing in this system, and the interferogram and image of object could be gained at the same time. The fore-optics system imaged the object on the plane mirror and multi-micro-mirror of the interference system, due to the structure feature of multi-micro-mirror, the optical path difference (OPD) of two imaging beam could be modulated. Through the reimaging system, the image of object with different interference order could be obtained. By means of the analysis to the spectrum signal-to-noise ratio (SNR) of interference system, the relationship between spectrum SNR and image SNR was definite, and the characteristic parameters of multi-micro-mirror were determined. To ensure the constancy of OPD corresponding to each step plane, by means of the analysis to the imaging process of fore-optics system, the optical path structure of telecentric in image space was determined. According to the calculation of the relationship between field of view and OPD, the design indexes of fore-optics system were determined and the optical design was completed. To ensure no extra OPD was introduced by reimaging system, through the analysis of the imaging feature by reimaging system, the optical path structure of double telecentric was determined. According to the calculation of the relationship between incidence aperture angle and step number, the optical system that satisfied the system requirement was designed. By means of the theory analysis and optical design to each unit system, this research can provide a novel development strategy for static and high throughput FTIS.
ABSTRACT
A novel static medium wave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) is conceptually proposed and experimentally demonstrated. In this system, the moving mirror in traditional temporally modulated IFTS is replaced by multi-step micro-mirrors to realize the static design. Compared with the traditional spatially modulated IFTS, they have no slit system and are superior with larger luminous flux and higher energy efficiency. The use of the multi-step micro-mirrors can also make the system compact and light.
ABSTRACT
Collimation system provides collimated light for the static Fourier-transform spectroscopy (SFTS). Its quality is crucial to the signal to noise ratio (SNR) of SFTS. In the present paper, the physical model of SFTS was established based on the Fresnel diffraction theory by means of numerical software. The influence of collimation system on the SFTS was discussed in detail focusing on the aberrations of collimation lens and the quality of extended source. The results of simulation show that the influences of different kinds of aberrations on SNR take on obvious regularity, and in particular, the influences of off-axis aberrations on SNR are closely related to the location of off-axis point source. Finally the extended source's maximum radius allowed was obtained by simulation, which equals to 0.65 mm. The discussion results will be used for the design of collimation system.
ABSTRACT
The vector characteristics of light and the vectorial transformations during its transmission lay a foundation for polarized photodetection of objects, which broadens the applications of related detectors in complex environments. With the breakthrough of low-dimensional materials (LDMs) in optics and electronics over the past few years, the combination of these novel LDMs and traditional working modes is expected to bring new development opportunities in this field. Here, the state-of-the-art progress of LDMs, as polarization-sensitive components in polarized photodetection and even the imaging, is the main focus, with emphasis on the relationship between traditional working principle of polarized photodetectors (PPs) and photoresponse mechanisms of LDMs. Particularly, from the view of constitutive equations, the existing works are reorganized, reclassified, and reviewed. Perspectives on the opportunities and challenges are also discussed. It is hoped that this work can provide a more general overview in the use of LDMs in this field, sorting out the way of related devices for "more than Moore" or even the "beyond Moore" research.
ABSTRACT
A model of miniaturized space-modulated Fourier transform infrared spectrometer (FTIR) is given. The two step mirrors as the key components are designed and a lithography-electroplating technique used to fabricate the small step mirror is proposed. We analyze the effect of the experiment results resulted from fabricating technics on the recovery spectrum in theory, and demonstrate that the lithography-electroplating technique is an effective method to fabricate the step mirror, which make miniaturized FTIR realized. We believe that the performances of FTIR can be better realized by optimizing experimental conditions to make this fabricating method more attractive.