Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 621(7977): 75-81, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37673990

ABSTRACT

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

2.
Nature ; 590(7847): 600-605, 2021 02.
Article in English | MEDLINE | ID: mdl-33408412

ABSTRACT

The intensive application of inorganic nitrogen underlies marked increases in crop production, but imposes detrimental effects on ecosystems1,2: it is therefore crucial for future sustainable agriculture to improve the nitrogen-use efficiency of crop plants. Here we report the genetic basis of nitrogen-use efficiency associated with adaptation to local soils in rice (Oryza sativa L.). Using a panel of diverse rice germplasm collected from different ecogeographical regions, we performed a genome-wide association study on the tillering response to nitrogen-the trait that is most closely correlated with nitrogen-use efficiency in rice-and identified OsTCP19 as a modulator of this tillering response through its transcriptional response to nitrogen and its targeting to the tiller-promoting gene DWARF AND LOW-TILLERING (DLT)3,4. A 29-bp insertion and/or deletion in the OsTCP19 promoter confers a differential transcriptional response and variation in the tillering response to nitrogen among rice varieties. The allele of OsTCP19 associated with a high tillering response to nitrogen is prevalent in wild rice populations, but has largely been lost in modern cultivars: this loss correlates with increased local soil nitrogen content, which suggests that it might have contributed to geographical adaptation in rice. Introgression of the allele associated with a high tillering response into modern rice cultivars boosts grain yield and nitrogen-use efficiency under low or moderate levels of nitrogen, which demonstrates substantial potential for rice breeding and the amelioration of negative environment effects by reducing the application of nitrogen to crops.


Subject(s)
Adaptation, Physiological/genetics , Crops, Agricultural/genetics , Nitrogen/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Soil/chemistry , Alleles , Crops, Agricultural/metabolism , Epistasis, Genetic , Gene Expression Regulation, Plant , Genetic Introgression , Genetic Variation , Genome-Wide Association Study , INDEL Mutation , Oryza/growth & development , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics
3.
Plant Cell ; 35(3): 994-1012, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36560915

ABSTRACT

Species of the tribe Delphinieae (Ranunculaceae) have long been the focus of morphological, ecological, and evolutionary studies due to their highly specialized, nearly zygomorphic (bilaterally symmetrical) spiral flowers with nested petal and sepal spurs and reduced petals. The mechanisms underlying the development and evolution of Delphinieae flowers, however, remain unclear. Here, by conducting extensive phylogenetic, comparative transcriptomic, expression, and functional studies, we clarified the evolutionary histories, expression patterns, and functions of floral organ identity and symmetry genes in Delphinieae. We found that duplication and/or diversification of APETALA3-3 (AP3-3), AGAMOUS-LIKE6 (AGL6), CYCLOIDEA (CYC), and DIVARICATA (DIV) lineage genes was tightly associated with the origination of Delphinieae flowers. Specifically, an AGL6-lineage member (such as the Delphinium ajacis AGL6-1a) represses sepal spur formation and petal development in the lateral and ventral parts of the flower while determining petal identity redundantly with AGL6-1b. By contrast, two CYC2-like genes, CYC2b and CYC2a, define the dorsal and lateral-ventral identities of the flower, respectively, and form complex regulatory links with AP3-3, AGL6-1a, and DIV1. Therefore, duplication and diversification of floral symmetry genes, as well as co-option of the duplicated copies into the preexisting floral regulatory network, have been key for the origin of Delphinieae flowers.


Subject(s)
Flowers , Gene Duplication , Ranunculaceae , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Ranunculaceae/genetics
4.
Plant Physiol ; 195(3): 2289-2308, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38466723

ABSTRACT

The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Disease Resistance , Gene Expression Regulation, Plant , Glutamine , Plant Roots , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/growth & development , Arabidopsis/drug effects , Glutamine/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Stress, Physiological/genetics , Disease Resistance/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Diseases/genetics , Plant Diseases/immunology , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics
5.
PLoS Biol ; 20(8): e3001739, 2022 08.
Article in English | MEDLINE | ID: mdl-35969610

ABSTRACT

Symbiotic nitrogen fixation (SNF) provides sufficient nitrogen (N) to meet most legume nutrition demands. In return, host plants feed symbionts carbohydrates produced in shoots. However, the molecular dialogue between shoots and symbionts remains largely mysterious. Here, we report the map-based cloning and characterization of a natural variation in GmNN1, the ortholog of Arabidopsis thaliana FLOWERING LOCUS T (FT2a) that simultaneously triggers nodulation in soybean and modulates leaf N nutrition. A 43-bp insertion in the promoter region of GmNN1/FT2a significantly decreased its transcription level and yielded N deficiency phenotypes. Manipulating GmNN1/GmFT2a significantly enhanced soybean nodulation, plant growth, and N nutrition. The near-isogenic lines (NILs) carrying low mRNA abundance alleles of GmNN1/FT2a, along with stable transgenic soybeans with CRISPR/Cas9 knockouts of GmNN1/FT2a, had yellower leaves, lower N concentrations, and fewer nodules than wild-type control plants. Grafting together with split-root experiments demonstrated that only shoot GmNN1/FT2a was responsible for regulating nodulation and thereby N nutrition through shoot-to-root translocation, and this process depends on rhizobial infection. After translocating into roots, shoot-derived GmNN1/FT2a was found to interact with GmNFYA-C (nuclear factor-Y subunit A-C) to activate symbiotic signaling through the previously reported GmNFYA-C-ENOD40 module. In short, the description of the critical soybean nodulation regulatory pathway outlined herein sheds novel insights into the shoot-to-root signaling required for communications between host plants and root nodulating symbionts.


Subject(s)
Arabidopsis , Glycine max , Arabidopsis/genetics , Arabidopsis/metabolism , Nitrogen/metabolism , Nitrogen Fixation , Plant Roots/genetics , Plant Roots/metabolism , Glycine max/genetics , Glycine max/metabolism , Symbiosis/genetics
6.
Proc Natl Acad Sci U S A ; 119(37): e2121848119, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36067324

ABSTRACT

Refractory carbides are attractive candidates for support materials in heterogeneous catalysis because of their high thermal, chemical, and mechanical stability. However, the industrial applications of refractory carbides, especially silicon carbide (SiC), are greatly hampered by their low surface area and harsh synthetic conditions, typically have a very limited surface area (<200 m2 g-1), and are prepared in a high-temperature environment (>1,400 °C) that lasts for several or even tens of hours. Based on Le Chatelier's principle, we theoretically proposed and experimentally verified that a low-pressure carbothermal reduction (CR) strategy was capable of synthesizing high-surface area SiC (569.9 m2 g-1) at a lower temperature and a faster rate (∼1,300 °C, 50 Pa, 30 s). Such high-surface area SiC possesses excellent thermal stability and antioxidant capacity since it maintained stability under a water-saturated airflow at 650 °C for 100 h. Furthermore, we demonstrated the feasibility of our strategy for scale-up production of high-surface area SiC (460.6 m2 g-1), with a yield larger than 12 g in one experiment, by virtue of an industrial viable vacuum sintering furnace. Importantly, our strategy is  also applicable to the rapid synthesis of refractory metal carbides (NbC, Mo2C, TaC, WC) and even their emerging high-entropy carbides (VNbMoTaWC5, TiVNbTaWC5). Therefore, our low-pressure CR method provides an alternative strategy, not merely limited to temperature and time items, to regulate the synthesis and facilitate the upcoming industrial applications of carbide-based advanced functional materials.

7.
Glia ; 72(6): 1150-1164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436489

ABSTRACT

Ischemic stroke is the leading cause of adult disability. The rewiring of surviving neurons is the fundamental process for functional recovery. Accumulating evidence implicates astrocytes in synapses and neural circuits formation, but few studies have further studied how to enhance the effects of astrocytes on synapse and circuits after stroke and its impacts on post-stroke functional recovery. In this study, we made use of chemogenetics to specifically activate astrocytic Gi signaling in the peri-infarcted sensorimotor cortex at different time epochs in a mouse model of photothrombotic stroke. We found that early activation of astrocytic hM4Di after stroke by CNO modulates astrocyte activity and upregulates synaptogenic molecules including thrombospondin-1 (TSP1) as revealed by bulk RNA-sequencing, but no significant improvement was observed in dendritic spine density and behavioral performance in grid walking test. Interestingly, when the manipulation was initiated at the subacute phase of stroke, the recovery of spine density and motor function could be effectively promoted, accompanied by increased TSP1 expression. Our data highlight the important role of astrocytes in synapse remodeling during the repair phase of stroke and suggest astrocytic Gi signaling activation as a potential strategy for synapse regeneration, circuit rewiring, and functional recovery.


Subject(s)
Astrocytes , Stroke , Mice , Animals , Astrocytes/metabolism , Stroke/metabolism , Signal Transduction , Neurons/metabolism , Synapses/metabolism
8.
J Am Chem Soc ; 146(7): 4557-4569, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345667

ABSTRACT

Intelligent utilization of the anionic redox reaction (ARR) in Li-rich cathodes is an advanced strategy for the practical implementation of next-generation high-energy-density rechargeable batteries. However, due to the intrinsic complexity of ARR (e.g., nucleophilic attacks), the instability of the cathode-electrolyte interphase (CEI) on a Li-rich cathode presents more challenges than typical high-voltage cathodes. Here, we manipulate CEI interfacial engineering by introducing an all-fluorinated electrolyte and exploiting its interaction with the nucleophilic attack to construct a gradient CEI containing a pair of fluorinated layers on a Li-rich cathode, delivering enhanced interfacial stability. Negative/detrimental nucleophilic electrolyte decomposition has been efficiently evolved to further reinforce CEI fabrication, resulting in the construction of LiF-based indurated outer shield and fluorinated polymer-based flexible inner sheaths. Gradient interphase engineering dramatically improved the capacity retention of the Li-rich cathode from 43 to 71% after 800 cycles and achieved superior cycling stability in anode-free and pouch-type full cells (98.8% capacity retention, 220 cycles), respectively.

9.
Br J Cancer ; 130(4): 585-596, 2024 03.
Article in English | MEDLINE | ID: mdl-38172534

ABSTRACT

BACKGROUND: The enriched proteins within in vitro fertilisation (IVF)-generated human embryonic microenvironment could reverse progestin resistance in endometrial cancer (EC). METHODS: The expression of thymic stromal lymphopoietin (TSLP) in EC was evaluated by immunoblot and IHC analysis. Transcriptome sequencing screened out the downstream pathway regulated by TSLP. The role of TSLP, androgen receptor (AR) and KANK1 in regulating the sensitivity of EC to progestin was verified through a series of in vitro and in vivo experiments. RESULTS: TSLP facilitates the formation of a BMP4/BMP7 heterodimer, resulting in activation of Smad5, augmenting AR signalling. AR in turn sensitises EC cells to progestin via KANK1. Downregulation of TSLP, loss of AR and KANK1 in EC patients are associated with tumour malignant progress. Moreover, exogenous TSLP could rescue the anti-tumour effect of progestin on mouse in vivo xenograft tumour. CONCLUSIONS: Our findings suggest that TSLP enhances the sensitivity of EC to progestin through the BMP4/Smad5/AR/KANK1 axis, and provide a link between embryo development and cancer progress, paving the way for the establishment of novel strategy overcoming progestin resistance using embryo original factors.


Subject(s)
Endometrial Neoplasms , Thymic Stromal Lymphopoietin , Animals , Female , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Progestins/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction , Tumor Microenvironment
10.
J Neuroinflammation ; 21(1): 86, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584255

ABSTRACT

Ischemic stroke is the leading cause of adult disability. Ischemia leads to progressive neuronal death and synapse loss. The engulfment of stressed synapses by microglia further contributes to the disruption of the surviving neuronal network and related brain function. Unfortunately, there is currently no effective target for suppressing the microglia-mediated synapse engulfment. Stimulator of interferon genes (STING) is an important participant in innate immune response. In the brain, microglia are the primary cell type that mediate immune response after brain insult. The intimate relationship between STING and microglia-mediated neuroinflammation has been gradually established. However, whether STING affects other functions of microglia remains elusive. In this study, we found that STING regulated microglial phagocytosis of synapses after photothrombotic stroke. The treatment of STING inhibitor H151 significantly improved the behavioral performance of injured mice in grid-walking test, cylinder test, and adhesive removal test after stroke. Moreover, the puncta number of engulfed SYP or PSD95 in microglia was reduced after consecutive H151 administration. Further analysis showed that the mRNA levels of several complement components and phagocytotic receptors were decreased after STING inhibition. Transcriptional factor STAT1 is known for regulating most of the decreased molecules. After STING inhibition, the nucleus translocation of phosphorylated STAT1 was also suppressed in microglia. Our data uncovered the novel regulatory effects of STING in microglial phagocytosis after stroke, and further emphasized STING as a potential drug-able target for post-stroke functional recovery.


Subject(s)
Brain Ischemia , Stroke , Animals , Humans , Mice , Brain Ischemia/metabolism , Microglia/metabolism , Phagocytosis , Stroke/complications , Stroke/metabolism , Synapses/metabolism
11.
New Phytol ; 241(4): 1813-1828, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062896

ABSTRACT

Nodulation begins with the initiation of infection threads (ITs) in root hairs. Though mutual recognition and early symbiotic signaling cascades in legumes are well understood, molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis remain largely unexplored. We functionally investigated a novel pectate lyase enzyme, GmNPLa, and its transcriptional regulator GmPTF1a/b in soybean (Glycine max), where their regulatory roles in IT development and nodule formation were elucidated through investigation of gene expression patterns, bioinformatics analysis, biochemical verification of genetic interactions, and observation of phenotypic impacts in transgenic soybean plants. GmNPLa was specifically induced by rhizobium inoculation in root hairs. Manipulation of GmNPLa produced remarkable effects on IT and nodule formation. GmPTF1a/b displayed similar expression patterns as GmNPLa, and manipulation of GmPTF1a/b also severely influenced nodulation traits. LI soybeans with low nodulation phenotypes were nearly restored to HI nodulation level by complementation of GmNPLa and/or GmPTF1a. Further genetic and biochemical analysis demonstrated that GmPTF1a can bind to the E-box motif to activate transcription of GmNPLa, and thereby facilitate nodulation. Taken together, our findings potentially reveal novel mediation of cell wall gene expression involving the basic helix-loop-helix transcription factor GmPTF1a/b acts as a key early regulator of nodulation in soybean.


Subject(s)
Glycine max , Rhizobium , Glycine max/genetics , Plant Root Nodulation/physiology , Plant Proteins/metabolism , Rhizobium/physiology , Phenotype , Gene Expression Regulation, Plant , Symbiosis
12.
J Med Virol ; 96(3): e29468, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38415499

ABSTRACT

Cervical human papillomavirus (HPV) infection is believed to increase the risks of pregnancy failure and abortion, however, whether the uterine cavity HPV infection reduces pregnancy rate or increases miscarriage rate remains unclarified in infertile women undergoing assisted reproductive technology (ART) treatment. Therefore, we aimed to assess ART outcomes in the presence of intrauterine HPV. This was a hospital-based multicenter (five reproductive medicine centers) matched cohort study. This study involved 4153 infertile women undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection treatment in five reproductive medicine centers between October 2018 and 2020. The spent embryo transfer media sample with endometrium tissue were collected and performed with flow-through hybridization and gene chips to detect HPV DNA. According to basic characteristics, HPV-positive and negative patients were matched in a ratio of 1:4 by age, body mass index transfer timing, transfer type, and number of embryos transferred. The primary outcome was pregnancy and clinical miscarriage rates in the transfer cycle underwent HPV detection. 92 HPV-positive and 368 HPV-negative patients were screened and analyzed statistically. Univariate analysis showed uterine cavity HPV infection resulted in lower rates of ongoing pregnancy (31.5% vs. 44.6%; p = 0.023), implantation (32.3% vs. 43.1%; p = 0.026), biochemical pregnancy (47.8% vs. 62.5%; p = 0.010), and clinical pregnancy (40.2% vs. 54.3%; p = 0.015) compared with HPV negative group. The infertile female with positive HPV also had a slightly higher frequency of biochemical miscarriage (15.9% vs. 13.0%; p = 0.610) and clinical miscarriage (24.3% vs. 15.5%; p = 0.188). These findings suggest that HPV infection in the uterine cavity is a high risk for ART failure. HPV screening is recommended before ART treatment, which may be benefit to improving pregnancy outcome.


Subject(s)
Abortion, Spontaneous , Infertility, Female , Papillomavirus Infections , Pregnancy , Humans , Male , Female , Papillomavirus Infections/diagnosis , Infertility, Female/therapy , Human Papillomavirus Viruses , Cohort Studies , Semen , Embryo Transfer/methods , Reproductive Techniques, Assisted , Fertilization in Vitro , Treatment Failure
13.
Plant Physiol ; 192(2): 1532-1547, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36843191

ABSTRACT

Nutrient sensing and signaling are critical for plants to coordinate growth and development in response to nutrient availability. Plant ACT DOMAIN REPEAT (ACR) proteins have been proposed to serve as nutrient sensors, but their functions remain largely unknown. Here, we showed that Arabidopsis (Arabidopsis thaliana) ACR9 might function as a repressor in glucose (Glc) signaling pathways. ACR9 was highly expressed in the leaves, and its expression was downregulated by sugars. Interestingly, the acr9-1 and acr9-2 T-DNA insertion mutants were hypersensitive to Glc during seedling growth, development, and anthocyanin accumulation. Nitrogen deficiency increased the mutants' sensitivity to Glc. The expression of sugar-responsive genes was also significantly enhanced in the acr9 mutants. By contrast, the 35S:ACR9 and 35S:ACR9-GFP overexpression (OE) lines were insensitive to Glc during early seedling development. The Glc signaling pathway is known to interact with the plant hormone abscisic acid (ABA). Notably, the acr9 mutants were also hypersensitive to ABA during early seedling development. The Glc sensor HEXOKINASE1 (HXK1) and the energy sensor SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE1 (SnRK1) are key components of the Glc signaling pathways. The acr9-1/hxk1-3 and acr9-1/snrk1 double mutants were no longer hypersensitive to Glc, indicating that functional HXK1 and SnRK1 were required for the acr9-1 mutant to be hypersensitive to Glc. Together, these results suggest that ACR9 is a repressor of the Glc signaling pathway, which may act independently or upstream of the HXK1-SnRK1 signaling module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Glucose/metabolism , Arabidopsis Proteins/metabolism , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Signal Transduction/physiology , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism
14.
Plant Cell Environ ; 47(4): 1041-1052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37997205

ABSTRACT

In arbuscular mycorrhizal (AM) symbiosis, sugars in root cortical cells could be exported as glucose or sucrose into peri-arbuscular space for use by AM fungi. However, no sugar transporter has been identified to be involved in sucrose export. An AM-inducible SWEET transporter, GmSWEET6, was functionally characterised in soybean, and its role in AM symbiosis was investigated via transgenic plants. The expression of GmSWEET6 was enhanced by inoculation with the cooperative fungal strain in both leaves and roots. Heterologous expression in a yeast mutant showed that GmSWEET6 mainly transported sucrose. Transgenic plants overexpressing GmSWEET6 increased sucrose concentration in root exudates. Overexpression or knockdown of GmSWEET6 decreased plant dry weight, P content, and sugar concentrations in non-mycorrhizal plants, which were partly recovered in mycorrhizal plants. Intriguingly, overexpression of GmSWEET6 increased root P content and decreased the percentage of degraded arbuscules, while knockdown of GmSWEET6 increased root sugar concentrations in RNAi2 plants and the percentage of degraded arbuscules in RNAi1 plants compared with wild-type plants when inoculated with AM fungi. These results in combination with subcellular localisation of GmSWEET6 to peri-arbuscular membranes strongly suggest that GmSWEET6 is required for AM symbiosis by mediating sucrose efflux towards fungi.


Subject(s)
Mycorrhizae , Symbiosis , Glycine max , Mycorrhizae/metabolism , Fungi , Plants, Genetically Modified/metabolism , Glucose/metabolism , Sucrose/metabolism , Plant Roots/metabolism
15.
Clin Genet ; 105(5): 549-554, 2024 05.
Article in English | MEDLINE | ID: mdl-38225536

ABSTRACT

Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.


Subject(s)
Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Infant , Animals , Rats , Male , Humans , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Potassium Channels, Inwardly Rectifying/genetics , HEK293 Cells , Receptors, Drug/genetics , Receptors, Drug/metabolism , Mutation/genetics , Congenital Hyperinsulinism/genetics , Adenosine Triphosphate , Potassium/metabolism
16.
Environ Sci Technol ; 58(20): 8685-8695, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709795

ABSTRACT

Forecasting alterations in ambient air pollution and the consequent health implications is crucial for safeguarding public health, advancing environmental sustainability, informing economic decision making, and promoting appropriate policy and regulatory action. However, predicting such changes poses a substantial challenge, requiring accurate data, sophisticated modeling methodologies, and a meticulous evaluation of multiple drivers. In this study, we calculate premature deaths due to ambient fine particulate matter (PM2.5) exposure in India from the 2020s (2016-2020) to the 2100s (2095-2100) under four different socioeconomic and climate scenarios (SSPs) based on four CMIP6 models. PM2.5 concentrations decreased in all SSP scenarios except for SSP3-7.0, with the lowest concentration observed in SSP1-2.6. The results indicate an upward trend in the five-year average number of deaths across all scenarios, ranging from 1.01 million in the 2020s to 4.12-5.44 million in the 2100s. Further analysis revealed that the benefits of reducing PM2.5 concentrations under all scenarios are largely mitigated by population aging and growth. These findings underscore the importance of proactive measures and an integrated approach in India to improve atmospheric quality and reduce vulnerability to aging under changing climate conditions.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , India , Humans , Air Pollutants/analysis , Environmental Exposure , Climate
17.
Environ Sci Technol ; 58(22): 9760-9769, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38775357

ABSTRACT

Peroxyacetyl nitrate (PAN) is produced in the atmosphere by photochemical oxidation of non-methane volatile organic compounds in the presence of nitrogen oxides (NOx), and it can be transported over long distances at cold temperatures before decomposing thermally to release NOx in the remote troposphere. It is both a tracer and a precursor for transpacific ozone pollution transported from East Asia to North America. Here, we directly demonstrate this transport with PAN satellite observations from the infrared atmospheric sounding interferometer (IASI). We reprocess the IASI PAN retrievals by replacing the constant prior vertical profile with vertical shape factors from the GEOS-Chem model that capture the contrasting shapes observed from aircraft over South Korea (KORUS-AQ) and the North Pacific (ATom). The reprocessed IASI PAN observations show maximum transpacific transport of East Asian pollution in spring, with events over the Northeast Pacific offshore from the Western US associated in GEOS-Chem with elevated ozone in the lower free troposphere. However, these events increase surface ozone in the US by less than 1 ppbv because the East Asian pollution mainly remains offshore as it circulates the Pacific High.


Subject(s)
Ozone , Ozone/chemistry , Atmosphere/chemistry , Air Pollutants , Environmental Monitoring
18.
Bioorg Chem ; 146: 107280, 2024 May.
Article in English | MEDLINE | ID: mdl-38479131

ABSTRACT

Ten new compounds, including three pairs of diarylcyclopentenone enantiomers (±) talaromycesins A-C (1-3) and four biphenyl derivatives talaromycesins D-G (4-7), along with four known compounds (8-11), were isolated from the fungus Talaromyces adpressus. Their structures were determined by analyses of extensive NMR spectroscopic and HRESIMS data, and their absolute configurations were elucidated by the dimolybdenum tetraacetate [Mo2(AcO)4]-induced ECD spectra, X-ray crystallographic studies, and ECD calculations. These new compounds were evaluated for their immunosuppressive activities for the first time, and compound 7 probably exerted liver-protective and anti-inflammatory effects on Con A-induced AIH by decreasing the levels of inflammatory cytokines, modulating immune homeostasis, and decreasing hepatocyte apoptosis, which may become a potential drug for the treatment of autoimmune diseases.


Subject(s)
Talaromyces , Magnetic Resonance Spectroscopy , Talaromyces/chemistry , Biphenyl Compounds , Molecular Structure
19.
Curr Microbiol ; 81(7): 182, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769214

ABSTRACT

Fusarium proliferatum is the main pathogen that causes Panax notoginseng root rot. The shortcomings of strong volatility and poor water solubility of Illicium verum essential oil (EO) limit its utilization. In this study, we prepared traditional emulsion (BDT) and nanoemulsion (Bneo) of I. verum EO by ultrasonic method with Tween-80 and absolute ethanol as solvents. The chemical components of EO, BDT, and Bneo were identified by gas chromatography-mass spectrometry (GC-MS) and the antifungal activity and mechanism were compared. The results show that Bneo has good stability and its particle size is 34.86 nm. The contents of (-) -anethole and estragole in Bneo were significantly higher than those in BDT. The antifungal activity against F. proliferatum was 5.8-fold higher than BDT. In the presence of I. verum EO, the occurrence of P. notoginseng root rot was significantly reduced. By combining transcriptome and metabolomics analysis, I. verum EO was found to be involved in the mutual transformation of pentose and glucuronic acid, galactose metabolism, streptomycin biosynthesis, carbon metabolism, and other metabolic pathways of F. proliferatum, and it interfered with the normal growth of F. proliferatum to exert antifungal effects. This study provide a theoretical basis for expanding the practical application of Bneo.


Subject(s)
Antifungal Agents , Emulsions , Fusarium , Illicium , Metabolomics , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Fusarium/drug effects , Fusarium/genetics , Fusarium/metabolism , Illicium/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/chemistry , Emulsions/chemistry , Transcriptome , Gas Chromatography-Mass Spectrometry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Gene Expression Profiling
20.
World J Surg Oncol ; 22(1): 150, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844951

ABSTRACT

PURPOSE: To evaluate the predictors for short and long term urinary continence (UC) recovery after laparoscopic radical prostatectomy (LRP) from clinical and oncological variables. METHODS: We retrospectively collected data from 142 prostate cancer patients who underwent LRP between September 2014 and June 2021 at a tumor specialist diagnosis and treatment center in China. The rate of post-prostatectomy incontinence (PPI) was evaluated from immediate and at 3, 6 and 12 mo after LRP, and UC was defined as the use of no or one safety pad. Sixteen clinical and oncological variables were analyzed by univariate and multivariate regression analysis to determine whether they were associated with short (3 mo) or long term (12 mo) UC recovery after LRP. RESULTS: After eliminating patients who were lost to follow-up, 129 patients were eventually included. The mean ± SD age was 68 ± 6.3 years. The UC rates of immediate, 3, 6 and 12 mo after the operation were 27.9%, 54.3%, 75.2% and 88.4%, respectively. Multivariate analyses revealed that membranous urethral length (MUL) was a protective predictor of UC after catheter extraction(P < 0.001), and at 3 mo (P < 0.001), 6 mo (P < 0.001) and 12 mo (P = 0.009) after surgery. CONCLUSION: MUL is a significant independent factor that can contribute to short and long term UC recovery post-LRP, which may assist clinicians and their patients in counseling of treatment.


Subject(s)
Laparoscopy , Postoperative Complications , Prostatectomy , Prostatic Neoplasms , Urinary Incontinence , Humans , Male , Prostatectomy/adverse effects , Prostatectomy/methods , Laparoscopy/adverse effects , Laparoscopy/methods , Prostatic Neoplasms/surgery , Urinary Incontinence/etiology , Urinary Incontinence/epidemiology , Aged , Retrospective Studies , China/epidemiology , Postoperative Complications/etiology , Follow-Up Studies , Prognosis , Middle Aged , Recovery of Function
SELECTION OF CITATIONS
SEARCH DETAIL