Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589543

ABSTRACT

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

2.
Proc Natl Acad Sci U S A ; 119(40): e2204666119, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36161954

ABSTRACT

Given the high energy density and eco-friendly characteristics, lithium-carbon dioxide (Li-CO2) batteries have been considered to be a next-generation energy technology to promote carbon neutral and space exploration. However, Li-CO2 batteries suffer from sluggish reaction kinetics, causing large overpotential and poor energy efficiency. Here, we observe enhanced reaction kinetics in aprotic Li-CO2 batteries with unconventional phase 4H/face-centered cubic (fcc) iridium (Ir) nanostructures grown on gold template. Significantly, 4H/fcc Ir exhibits superior electrochemical performance over fcc Ir in facilitating the round-trip reaction kinetics of Li+-mediated CO2 reduction and evolution, achieving a low charge plateau below 3.61 V and high energy efficiency of 83.8%. Ex situ/in situ studies and theoretical calculations reveal that the boosted reaction kinetics arises from the highly reversible generation of amorphous/low-crystalline discharge products on 4H/fcc Ir via the Ir-O coupling. The demonstration of flexible Li-CO2 pouch cells with 4H/fcc Ir suggests the feasibility of using unconventional phase nanomaterials in practical scenarios.

3.
Angew Chem Int Ed Engl ; 63(3): e202313491, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37990769

ABSTRACT

Constructing ambient-stable, single-atom-layered metal-based materials with atomic precision and understanding their underlying stability mechanisms are challenging. Here, stable single-atom-layered nanoclusters of Pd were synthesized and precisely characterized through electrospray ionization mass spectrometry and single-crystal X-ray crystallography. A pseudo-pentalene-like Pd8 unit was found in the nanocluster, interacting with two syn PPh units through nonmetal-to-metal -ring coordination. The unexpected coordination, which is distinctly different from the typical organoring-to-metal coordination in half-sandwich-type organometallic compounds, contributes to the ambient stability of the as-obtained single-atom-layered nanocluster as revealed through theoretical and experimental analyses. Furthermore, quantum chemical calculations revealed dominant electron transition along the horizontal x-direction of the Pd8 plane, indicating high photothermal conversion efficiency (PCE) of the nanocluster, which was verified by the experimental PCE of 73.3 %. Therefore, this study unveils the birth of a novel type of compound and the finding of the unusual nonmetal-to-metal -ring coordination and has important implications for future syntheses, structures, properties, and structure-property correlations of single-atom-layered metal-based materials.

4.
Angew Chem Int Ed Engl ; : e202407518, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752452

ABSTRACT

Gold nanoclusters exhibiting concomitant photothermy (PT) and photoluminescence (PL) under near-infrared (NIR) light irradiation are rarely reported, and some fundamental issues remain unresolved for such materials. Herein, we concurrently synthesized two novel rod-shaped Au nanoclusters, Au52(PET)32 and Au66(PET)38 (PET = 2-phenylethanethiolate), and precisely revealed that their kernels were 4 × 4 × 6 and 5 × 4 × 6 face-centered cubic (fcc) structures, respectively, based on the numbers of Au layers in the [100], [010], and [001] directions. Following the structural growth mode from Au52(PET)32 to Au66(PET)38, we predicted six more novel nanoclusters. The concurrent synthesis provides rational comparison of the two nanoclusters on the stability, absorption, emission and photothermy, and reveals the aspect ratio-related properties. An interesting finding is that the two nanoclusters exhibit concomitant PT and PL under 785 nm light irradiation, and the PT and PL are in balance, which was explained by the qualitative evaluation of the radiative and non-radiative rates. The ligand effects on PT and PL were also investigated.

5.
Angew Chem Int Ed Engl ; 63(25): e202402565, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38588114

ABSTRACT

Atomically precise ~1-nm Pt nanoparticles (nanoclusters, NCs) with ambient stability are important in fundamental research and exhibit diverse practical applications (catalysis, biomedicine, etc.). However, synthesizing such materials is challenging. Herein, by employing the mixture ligand protecting strategy, we successfully synthesized the largest organic-ligand-protected (~1-nm) Pt23 NCs precisely characterized with mass spectrometry and single-crystal X-ray diffraction analyses. Interestingly, natural population analysis and Bader charge calculation indicate an alternate, varying charge -layer distribution in the sandwich-like Pt23 NC kernel. Pt23 NCs can catalyze the oxygen reduction reaction under acidic conditions without requiring calcination and other treatments, and the resulting specific and mass activities without further treatment are sevenfold and eightfold higher than those observed for commercial Pt/C catalysts, respectively. Density functional theory and d-band center calculations interpret the high activity. Furthermore, Pt23 NCs exhibit a photothermal conversion efficiency of 68.4 % under 532-nm laser irradiation and can be used at least for six cycles, thus demonstrating great potential for practical applications.

6.
Nano Lett ; 22(17): 7144-7150, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35868014

ABSTRACT

To propose the concept of single-atom-kernelled nanocluster, we synthesized a Pd-based trimetal nanocluster with a single-Ag atom-kernel for the first time by introducing some steric hindrance factors and employing a joint alloying strategy that combines the coreduction with an antigalvanic reduction (AGR). Although the AGR-derived Pd-based trimetal nanoclusters with single-silver atom kernels have low contents of gold, they show higher activity and selectivity than those of the bimetal precursor nanocluster in the electrocatalytical reduction of CO2 to CO. Furthermore, it is revealed that the kernel single atoms from both Au4Pd6(TBBT)12 and Au3AgPd6(TBBT)12 are not the active sites for catalysis, but greatly influence the catalytical performance by effecting the electronic configuration. Thus, it is demonstrated that the single-atom-kernelled nanocluster can not only improve the precious metal utilization (even to 100%) but also better the properties and provide insight into the structure-property correlation for metal nanoclusters.


Subject(s)
Gold , Silver , Catalysis , Gold/chemistry , Silver/chemistry
7.
Angew Chem Int Ed Engl ; 62(36): e202305604, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37208858

ABSTRACT

Metal nanoclusters have recently attracted extensive interest from the scientific community. However, unlike carbon-based materials and metal nanocrystals, they rarely exhibit a sheet kernel structure, probably owing to the instability caused by the high exposure of metal atoms (particularly in the relatively less noble Ag or Cu nanoclusters) in such a structure. Herein, we synthesized a novel AgCu nanocluster with a sandwich-like kernel (diameter≈0.9 nm and length≈0.25 nm) by introducing the furfuryl mercaptan ligand (FUR) and the alloying strategy. Interestingly, the kernel consists of a centered silver atom and two planar Ag10 pentacle units with completely mirrored symmetry after a rotation of 36 degrees. The two Ag10 pentacles and some extended structures show an unreported golden ratio geometry, and the two inner five-membered rings and the centered Ag atom form an unanticipated full-metal ferrocene-like structure. The featured kernel structure causes the dominant radial direction transition of excitation electrons, as determined via time-dependent density functional theory calculations, which affords the protruding absorption at 612 nm and contributes to the promising photothermal conversion efficiency of 67.6 % of the as-obtained nanocluster, having important implications for structure-property correlation and the development of nanocluser-based photothermal materials.

8.
Angew Chem Int Ed Engl ; 62(39): e202308441, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37428452

ABSTRACT

Lattice tuning at the ≈1 nm scale is fascinating and challenging; for instance, lattice compression at such a minuscule scale has not been observed. The lattice compression might also bring about some unusual properties, which waits to be verified. Through ligand induction, we herein achieve the lattice compression in a ≈1 nm gold nanocluster for the first time, as detected by the single-crystal X-ray crystallography. In a freshly synthesized Au52 (CHT)28 (CHT=S-c-C6 H11 ) nanocluster, the lattice distance of the (110) facet is found to be compressed from 4.51 to 3.58 Šat the near end. However, the lattice distances of the (111) and (100) facets show no change in different positions. The lattice-compressed nanocluster exhibits superior electrocatalytic activity for the CO2 reduction reaction (CO2 RR) compared to that exhibited by the same-sized Au52 (TBBT)32 (TBBT=4-tert-butyl-benzenethiolate) nanocluster and larger Au nanocrystals without lattice variation, indicating that lattice tuning is an efficient method for tailoring the properties of metal nanoclusters. Further theoretical calculations explain the high CO2 RR performance of the lattice-compressed Au52 (CHT)28 and provide a correlation between its structure and catalytic activity.

9.
J Am Chem Soc ; 144(1): 547-555, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34932339

ABSTRACT

Controlled construction of bimetallic nanostructures with a well-defined heterophase is of great significance for developing highly efficient nanocatalysts and investigating the structure-dependent catalytic performance. Here, a wet-chemical synthesis method is used to prepare Au@Pd core-shell nanorods with a unique fcc-2H-fcc heterophase (fcc: face-centered cubic; 2H: hexagonal close-packed with a stacking sequence of "AB"). The obtained fcc-2H-fcc heterophase Au@Pd core-shell nanorods exhibit superior electrocatalytic ethanol oxidation performance with a mass activity as high as 6.82 A mgPd-1, which is 2.44, 6.96, and 6.43 times those of 2H-Pd nanoparticles, fcc-Pd nanoparticles, and commercial Pd/C, respectively. The operando infrared reflection absorption spectroscopy reveals a C2 pathway with fast reaction kinetics for the ethanol oxidation on the prepared heterophase Au@Pd nanorods. Our experimental results together with density functional theory calculations indicate that the enhanced performance of heterophase Au@Pd nanorods can be attributed to the unconventional 2H phase, the 2H/fcc phase boundary, and the lattice expansion of the Pd shell. Moreover, the heterophase Au@Pd nanorods can also serve as an efficient catalyst for the electrochemical oxidation of methanol, ethylene glycol, and glycerol. Our work in the area of phase engineering of nanomaterials (PENs) opens the way for developing high-performance electrocatalysts toward future practical applications.

10.
Small ; 18(11): e2106766, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35048509

ABSTRACT

The electrochemical carbon dioxide reduction reaction (CO2 RR) provides a sustainable strategy to relieve global warming and achieve carbon neutrality. However, the practical application of CO2 RR is still limited by the poor selectivity and low current density. Here, the surface molecular functionalization of unusual phase metal nanomaterials for high-performance CO2 RR under industry-relevant current density is reported. It is observed that 5-mercapto-1-methyltetrazole (MMT)-modified 4H/face-centered cubic (fcc) gold (Au) nanorods demonstrate greatly enhanced CO2 RR performance than original oleylamine (OAm)-capped 4H/fcc Au nanorods in both an H-type cell and flow cell. Significantly, MMT-modified 4H/fcc Au nanorods deliver an excellent carbon monoxide selectivity of 95.6% under the industry-relevant current density of 200 mA cm-2 . Density functional theory calculations reveal distinct electronic modulations by surface ligands, in which MMT improves while OAm suppresses the surface electroactivity of 4H/fcc Au nanorods. Furthermore, this method can be extended to various MMT derivatives and conventional fcc Au nanostructures in boosting CO2 RR performance.

11.
J Am Chem Soc ; 143(41): 17292-17299, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34613737

ABSTRACT

Crystal phase engineering of noble-metal-based alloy nanomaterials paves a new way to the rational synthesis of high-performance catalysts for various applications. However, the controlled preparation of noble-metal-based alloy nanomaterials with unconventional crystal phases still remains a great challenge due to their thermodynamically unstable nature. Herein, we develop a robust and general seeded method to synthesize PdCu alloy nanomaterials with unconventional hexagonal close-packed (hcp, 2H type) phase and also tunable Cu contents. Moreover, galvanic replacement of Cu by Pt can be further conducted to prepare unconventional trimetallic 2H-PdCuPt nanomaterials. Impressively, 2H-Pd67Cu33 nanoparticles possess a high mass activity of 0.87 A mg-1Pd at 0.9 V (vs reversible hydrogen electrode (RHE)) in electrochemical oxygen reduction reaction (ORR) under alkaline condition, which is 2.5 times that of the conventional face-centered cubic (fcc) Pd69Cu31 counterpart, revealing the important role of crystal phase on determining the ORR performance. After the incorporation of Pt, the obtained 2H-Pd71Cu22Pt7 catalyst shows a significantly enhanced mass activity of 1.92 A mg-1Pd+Pt at 0.9 V (vs RHE), which is 19.2 and 8.7 times those of commercial Pt/C and Pd/C, placing it among the best reported Pd-based ORR electrocatalysts under alkaline conditions.

12.
Angew Chem Int Ed Engl ; 60(16): 8668-8672, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33512719

ABSTRACT

Removing or adding kernel atoms of metal nanoclusters (NCs) without leaving a trace is a substantial challenge because the kernel atoms are inside and covered by the outer staples. However, such kernel tuning is very important for improving the properties and acquiring an in-depth understanding of the kernel-property correlation. Photoluminescence (PL) is one of the most intriguing characteristics of metal NCs but has not been well understood until now. Inspired by these challenges/questions, we conducted this study and, for the first time, achieved the traceless removal of two kernel atoms in a gold nanocluster by applying a simple thermal treatment and revealed its impact on PL. Further, we demonstrated that the kernel Au-Au bond length can be an indicator for a comparison of the PL or kernel charge state between nanoclusters with similar kernel structures and sizes.

13.
J Am Chem Soc ; 142(28): 12140-12145, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32517466

ABSTRACT

Oscillation is an intriguing phenomenon in nature. However, structural oscillation has not yet been found in semiconducting nanoparticles, primarily due to the difficulty of structural resolution at the atomic level. The emergence of gold nanoclusters (ultrasmall nanoparticles) has provided an excellent opportunity to address some challenging issues in the nanoparticle field. Herein, two Au28(CHT)20 (CHT: cyclohexanethiolate) structural isomers (Au28i and Au28ii for short) were concurrently synthesized by employing a quasi-antigalvanic method, and they could be reversibly transformed into each other for at least 10 cycles, driven by dissolution and crystallization processes. The transformation from Au28ii to Au28i is solvent-dielectric-constant-dependent, with a notable deuteration effect from dichloromethane. The markedly different photoluminescence values of these two isomers not only have important implications for the structure-property correlations but also have potential applications in converting, sensing, etc.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Crystallization , Molecular Structure
14.
J Am Chem Soc ; 142(2): 973-977, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31851504

ABSTRACT

Gold nanoclusters have attracted extensive interest for catalysis applications in recent years due to their ultrasmall sizes and well-defined compositions and structures. However, at least two challenges exist in this emerging field. First, the steric hindrance of the ligands inhibits the catalysis activity, and second, the mechanism underlying water-phase catalysis using gold nanoclusters is often ambiguous. Herein, we introduce a "kill two birds with one stone" strategy to address these two challenges via the use of host-guest chemistry. As an illustration, a novel adamantanethiolate-protected Au40(S-Adm)22 nanocluster was synthesized, bound with γ-CD-MOF, and then transferred to the HRP-mimicking reaction system. The as-obtained catalyst exhibits excellent water solubility and catalytical activity, totally different from the virgin Au40(S-Adm)22 nanoclusters. Further, the detailed HRP-mimicking catalysis mechanism was proposed and supported by DFT calculation. Another interesting finding is the unique structure of Au40(S-Adm)22, which can be regarded as an Au13 icosahedron unit derived structure but different from the widely reported icosahedron contained nanocluster where the Au13 icosahedrons are often centered. These novel, intriguing results have important implication for the property tuning and practical application of metal nanoclusters in the future.

15.
Angew Chem Int Ed Engl ; 59(8): 3073-3077, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31834651

ABSTRACT

Metal nanoclusters have recently attracted considerable attention, not only because of their special size range but also because of their well-defined compositions and structures. However, subtly tailoring the compositions and structures of metal nanoclusters for potential applications remains challenging. Now, a two-phase anti-galvanic reduction (AGR) method is presented for precisely tailoring Au44 (TBBT)28 to produce Au47 Cd2 (TBBT)31 nanoclusters with a hard-sphere random close-packed structure, exhibiting Faradaic efficiencies of up to 96 % at -0.57 V for the electrocatalytic reduction of CO2 to CO.

16.
Angew Chem Int Ed Engl ; 59(2): 731-734, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31663665

ABSTRACT

Kernel atoms of Au nanoclusters are packed layer-by-layer along the [001] direction with every full (001) monolayer composed of 8 Au atoms (Au8 unit) in nanoclusters with formula of Au8n+4 (TBBT)4n+8 (n is the number of Au8 units; TBBTH=4-tert-butylbenzenelthiol). It is unclear whether the kernel atoms can be stacked in a defective-layer way along the [001] direction during growth of the series of nanoclusters and how the kernel layer number affects properties. Now, a nanocluster is synthesized that is precisely characterized by mass spectrometry and single-crystal X-ray crystallography, revealing a layer stacking mode in which a half monolayer composed of 4 atoms (Au4 unit) is stacked on the full monolayer along the [001] direction. The size and the odevity of the kernel layer number influence the properties (polarity, photoluminescence) of gold nanoclusters. The obtained nanocluster extends the previous formula from Au8n+4 (TBBT)4n+8 to Au4n+4 (TBBT)2n+8 (n is the number of Au4 units).

17.
Inorg Chem ; 58(9): 5388-5392, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30985114

ABSTRACT

The alloying of monometal nanoparticles with a transition element has recently attracted extensive interest; however, the dealloying of alloy nanoparticles has rarely been reported. Two-way alloying and dealloying in metal nanoparticles is not known so far to the best of our knowledge. In this work, for the first time, we successfully achieved two-way alloying and dealloying of cadmium in metalloid gold clusters via an antigalvanic reaction in combination with a quasi-antigalvanic reaction and demonstrated reactant-ion-dependent dealloying as well.

18.
Angew Chem Int Ed Engl ; 58(29): 9897-9901, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31070836

ABSTRACT

An assembly strategy for metal nanoclusters using electrostatic interactions with weak interactions, such as C-H⋅⋅⋅π and π⋅⋅⋅π interactions in which cationic [Ag26 Au(2-EBT)18 (PPh3 )6 ]+ and anionic [Ag24 Au(2-EBT)18 ]- nanoclusters gather and assemble in an unusual alternating array stacking structure is presented. [Ag26 Au(2-EBT)18 (PPh3 )6 ]+ [Ag24 Au(2-EBT)18 ]- is a new compound type, a double nanocluster ion compound (DNIC). A single nanocluster ion compound (SNIC) [PPh4 ]+ [Ag24 Au(2-EBT)18 ]- was also synthesized, having a k-vector-differential crystallographic arrangement. [PPh4 ]+ [Ag24 Au(2,4-DMBT)18 ]- adopts a different assembly mode from both [Ag26 Au(2-EBT)18 (PPh3 )6 ]+ [Ag24 Au(2-EBT)18 ]- and [PPh4 ]+ [Ag24 Au(2-EBT)18 ]- . Thus, the striking packing differences of [Ag26 Au(2-EBT)18 (PPh3 )6 ]+ [Ag24 Au(2-EBT)18 ]- , [PPh4 ]+ [Ag24 Au(2-EBT)18 ]- and the existing [PPh4 ]+ [Ag24 Au(2,4-DMBT)18 ]- from each other indicate the notable influence of ligands and counterions on the self-assembly of nanoclusters.

19.
Angew Chem Int Ed Engl ; 58(14): 4510-4514, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30719808

ABSTRACT

Structural isomerism allows the correlation between structures and properties to be investigated. Unfortunately, the structural isomers of metal nanoparticles are rare and genuine structural isomerism with distinctly different kernel atom packing (e.g., face-centered cubic (fcc) vs. non-fcc) has not been reported until now. Herein we introduce a novel ion-induction method to synthesize a unique gold nanocluster with a twist mirror symmetry structure. The as-synthesized nanocluster has the same composition but different kernel atom packing to an existing gold nanocluster Au42 (TBBT)26 (TBBT=4-tert-butylbenzenethiolate). The fcc-structured Au42 (TBBT)26 nanocluster shows more enhanced photoluminescence than the non-fcc-structured Au42 (TBBT)26 nanocluster, indicating that the fcc-structure is more beneficial for emission than the non-fcc structure. This idea was supported by comparison of the emission intensity of another three pairs of gold nanoclusters with similar compositions and sizes but with different kernel atom packings (fcc vs. non-fcc).

20.
J Am Chem Soc ; 140(10): 3487-3490, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29470909

ABSTRACT

Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag12 icosohedral kernel of the Ag24Pt(SR)18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag24Pt(SR)18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL